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Abstract The Problem of minimum risk point estimation of the mean of the two paramater exponentiated inverted Weibull 
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of fixed sample size procedure is established and a sequential procedure is developed. Some asymptotic properties are 
obtained for the sequential procedure. 
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INTRODUCTION 
Flaih et al (2012) proposed the two paramater 
exponentiated inverted Weibull distribution (EIWD). This 
distribution is a generalization to the inverted Weibull 
distribution through adding a new shape parameter θ € R+ 
by exponentiation to distribution function F. Let us 
consider a sequence { ௜ܺ}; ݅ = 1,2,3, … of independently 
distributed random variable then from two parameter 
exponentiated inverted Weibull distribution with the p.d.f 
given as 
(ߚ,ߠ;ݔ)݂ = ݔ;ఉ൯ିݔߠ−൫݌ݔ݁(ఉାଵ)ିݔߚߠ > 0, ߠ > ߚ,0 >
0. (1.1) 
For θ=1, it represents the standard inverted Weibull 
distribution and for β=1, it represents the exponentiated 
inverted exponential distribution. 

From equation(1.1), the mean of the distribution is given 

by ∅ = )ܧ ௜ܺ) = ߠ
భ
ഁΓቀ1 − ଵ

ఉ
ቁ and ܸܽݎ( ௜ܺ) =

ߠ
మ
ഁΓ ቀ1− ଶ

ఉ
ቁ − ߠ

మ
ഁ ቂΓ ቀ1− ଵ

ఉ
ቁቃ
ଶ
. 

This distribution is really used in literature and has its 
applications in estimating the parameters so this 
sequential Procedure is considered instead of fixed 
sample size in this paper. The pioneer work of sequential 
test is proposed by Wald (1947), he developed sequential 
probability ratio test(SPRT) for testing hypothesis against 
a simple alternative. Further, in recent decades many 
authors has developed sequential procedure for point and 
interval estimation. For some citation, one may refers to 
Anscombe (1952), Woodroofe (1977), Zacks (1971), 
Nagao (1980), Chaturvedi (1987), Chaturvedi, Pandey 
and Gupta (1991), Chaturvedi and Shukla (1990), 
Mukhopadhyay and Pepe (2006), Uno, Isogai and Lim 
(2004), Roughani and Mohmoudi (2015) and others. The 
purpose of this note is two-fold. The problem of 
minimum risk point estimation of the mean(∅) of 
exponentiated inverted Weibull distribution under the 
square error loss function and linear cost of sampling is 
considered. It has been proved that the failure of the fixed 
sample size procedures to handle the estimation problem. 
purely sequential procedure are developed to tackle the 
situations. In section 2, the set-up of the estimation 
problem has been described and proved the failure of 
fixed sample size procedure to deal with them. In section 
3, the sequential procedure for the point estimation of the 
mean of two parmater exponentiated inverted Weibull 
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distribution has been proposed and the asymptotic Risk 
efficiency and regret for the given sequential procedure is 
achieved in the paper. 
 
SET-UP OF THE ESTIMATION PROBLEM  
Having record a sample ଵܺ,ܺଶ, … ,ܺ௡ of size n, let us 
define തܺ௡ = ∑ ௑೔

೙
೔సభ
௡

, as the estimator for ∅. Let the Loss-
incurred in estimating ∅ by തܺ௡ is of the form 
(ܥ)௡ܮ = )ܣ തܺ௡ − ∅)ଶ +  (2.1) ,ܥ݊
where A(>0) is known weight, C(>0) is the cost function. 
Form the loss(2.1), the risk comes out to be 

ܴ௡(ܥ) = ஺
௡
ߠ
మ
ഁ ൤Γ ቀ1− ଶ
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൨ + nC. (2.2) 

Treating n as a continuous variable, the value ݊∗ of n, 
which minimize the risk is 

݊∗= ቀ஺
௖
ቁ
భ
మ∅ ൥
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మ − 1൩

భ
మ

. (2.3) 

and the corresponding risk when n=݊∗, weget, 
ܴ௡∗ (ܥ)=(2.4) .ܥ∗2݊ 
Once again, since ݊∗ depends on ߠ, in the absence of any 
knowledge about ߠ, no fixed sample size procedure 
minimizes the risk simultaneously for all values of ߠ. So, 
to handle this problem in the following section we adopt 
sequential procedure.  
 
SEQUENTIAL PROCEDURE FOR THE 
POINT ESTIMATION OF MEAN  
Without loss of generality, we assume ߚ is known i.e. 
 ,as (ܥ) ∗we rewrite (݊∗) and ܴ௡ ,4=ߚ

݊∗ = K ቀ஺
௖
ቁ
భ
మ∅଴, (2.5)  

where, ∅଴ is the value of mean at 4=ߚ and K=൥
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ܴ௡∗ (ܥ) =  ଴. (2.6)∅ܥܣ√ܭ2
The stopping time ܰ ≡  is the first positive integer (ܥ)ܰ
݊ ≥ ݉(≥ 2) defined by 

ܰ = ݂݅݊ ൥݊ ≥ ݉;݊ ≥ ቀ஺
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ܰ = ݂݅݊ ቈ݊ ≥ ݉;݊ ≥ ቀ஺
௖
ቁ
భ
మ∅଴ܭ቉ (2. 8)  

where, m being the starting sample size. Use തܺே to 
estimate ∅଴.  

Following Starr (1966a,1996b), we define the Risk-
efficiency of the sequential procedure is given by 
ܴ௘ (ܥ) =  ோಿ (஼)

ோ೙∗(஼)
 (2.9) 

Also we define Regret as, 
ܴ୥ (ܥ)=ܴே (ܥ) − ܴ௡∗(ܥ), (2.10) 
where, ܴே (ܥ) is Risk associated with the sequential 
procedure, i.e. 
ܴே (ܥ) ,଴∅)ܮ൫ܧ = തܺே)൯ 
))ܧ]ܣ =  തܺே − ∅଴)ଶ)] + C E(N). (2.11) 
The following theorem based on Risk efficiency and 
Regret as follows is proved. 
Theorem 1. For the stopping rule define in (2.8) and all 
∅଴, 
 lim஼→଴ ܴ௘ (ܥ) = 1. (2.12) 
Proof. Rewrite the (2.8) and using ܵ௡ = ∑ ௜ܺ

௡
௜ୀଵ ,  
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From Wald’s Lemma for cumulative sum, 
ேܵ)]ܧ −ܰ∅଴)ଶ]  .(ܰܥ)ܧଶ∅଴ଶܭ =
From (2.11), weget, 
ܴே (ܥ) = ))ܧ]ܣ തܺே − ∅଴)ଶ)] - C E(N)+ 2C E(N) 

ܣ =  ൤ܧ ൬ቀௌಿ
ே
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ଶ
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ே
  

ܧ =  ቀ(ܵே −ܰ∅଴)ଶ ஺
ேమ
ቁ - C E(N)+ 2C E(N) 

ܧ =  ൬(ܵே −ܰ∅଴)ଶ ቀ ஺
ேమ
 ଶ∅଴ିଶቁ൰+2CE(N). (2.14)ିܭ−

Substitute (2.6), (2.11) in (2.9),weget, 

ܴ௘ (ܥ) =  
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It can be seen that ே

ቀಲ಴ቁ
భ
మ

 ⟶ ∅଴ܭ almost surely(a.s) as 

ܥ ⟶ 0.  
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The result follows from Gut(1974) that 

൥ቆቀ஺
஼
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ସ

ܣ: ≥ 1൩, is uniformly integrable. (2.16) 

Using (2.16) and Domianted Convergence theorem, 

lim஼→଴ ቌܧ
ே
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భ
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ቍ=1. (2.17) 

From (2.15) and (2.17), we conclude that the result 
follows if we can prove that 
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Using Holder’s Inequality, 
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From (2.16) and Lemma 5 of Chow and Yu (1981), 
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From the definition of N at (9), ܰିଶ ቀ஺
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Hence, using the dominated ergodic theorem of 
Marcinkiewicz and Zygmund[see Chow and 
Teicher(1978, p.35)], 
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and (2,21), we obtained from (2.19) that 
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 = o(1) as ܥ ⟶ 0. 
In the next theorem, we prove the bounded nature of the 
‘Regret’. 
Theorem 2: For the Sequential Procedure (2.8), 
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Proof: ܴ୥ (ܥ)=ܴே (ܥ) − ܴ௡∗(ܥ), 
From (2.14) and (2.6), we obtain as, 
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On using Holder’s inequality, weget 
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Utilizing (2.20), (2.21)and (24), we obtained form (2.22) 
as ܥ ⟶ 0. 
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