

Original Research Article

Study of future food crop *Bidens biternata* (Lour.) Merr and Sheriff - A nutraceutical approach

Umate Satish K.¹, Marathe Vishal R.^{2*}

^{1,2}PG Students, Department of Botany, NES Science College, Nanded, Maharashtra, INDIA.

Email: dr.vishalmarathe@gmail.com

Abstract

Unexploited vegetables refer to the plant species which are not cultivated at large scale commercially but tribes, local communities use such plants as vegetable. *Bidens biternata* is a widespread weed occurring in moist and shady places of gardens, in Farms, village, along the roadside and cultivated areas. Though it is not used commercially, it occupies an important place among the food of village communities of Western Ghats as wild leafy vegetable. All parts of *B. biternata* are used as ingredients in folk medicines, present study deals with the estimation of Nutraceuticals and some essential nutrients from its leaves. Results revealed that it has remarkable percentage of Alkaloids, Flavonoids and Phenolics. High concentration of Calcium, Magnesium and Iron were found in leaf extract.

Key Words: *Bidens biternata*, Nutraceutical, Unexploited vegetable.

*Address for Correspondence:

Dr. Marathe Vishal R., PG Department of Botany, NES Science College, Nanded, Maharashtra, INDIA.

Email: dr.vishalmarathe@gmail.com

Access this article online	
Quick Response Code:	Website: www.statperson.com
	Accessed Date: 10 March 2018

INTRODUCTION

Unexploited vegetables refer to the species which are not cultivated at large scale commercially but tribes use these plant as a vegetable (Sukumaran *et al* 2012). *Bidens biternata* (lour.) merr and sheriff commonly called *Kata* in regional language belong to family Asteraceae. It is a widespread weed occurring in moist and shady places of gardens, in Farms, village, along the roadside, cultivated areas and along the bank of small channels (Bhatt *et al* 2012) It occupies an important place among the food of village communities and tribe of Western Ghats as vegetable (Ratheesh *et al* 2012). It shows to possess antibacterial and antifungal activities (Ahmed *et. al.* 2016), anti-diarrheal activity (Dennis *et al* 2016). It has been used in traditional medicine as anti-inflammatory,

anti-malarial, anti-allergic, anti-ulcer, anti-diabetic, anti-cancer and antibacterial agent (Durre *et.al* 2011, Maicon *et al* 2008, Masako and Yoshiyuki 2006, Parimalakrishnan *et al* 2006, Sandra *et al* 2000). Whole plant is useful in cold, ulcers, leprosy (Shipra *et al* 2015). Nutraceutical the term coined in 1979 by Stephan De Felice. It is designed as a food or parts of food that provide medical or health benefits, including the prevention and treatment of disease (De Felice 1992). Nutraceutical may range from isolated nutrients, dietary supplements, herbal products and processed products. Nutraceutical play important role in physiological benefits and provide protection against the diseases (Rajsekaran *et al* 2008). The major nutraceutical ingredients in plant are alkaloids, phenolic compounds mainly Flavonoids (Tapas *et al* 2008, Marathe and Umate 2016). They have shown regulatory activity of hormones such as transport, metabolism and action of thyroid hormones (Ashok *et al* 2010). The human beings require mineral elements within certain concentrations for growth and good health. Analyzing the elemental composition in vegetables, fruits and their product is therefore very important for understanding their nutraceutical value. Since the plant has significant medicinal properties and having good future prospective in nutrition as well for human being, it is important to study the edible part of the plant. The present study has focused on the evaluation of

Alkaloids, Flavonoids, Total phenols and essential mineral elements from the leaf of *B.biterrata*.

MATERIALS AND METHODS

Collection of plant material: *B.biterrata* was collected from different areas of Nanded district of Maharashtra in period of August to October 2014. Collected plant leaves washed, shed dried and powdered. The powdered sample kept in airtight glass container. Plant identification was done at PG Department of Botany, N.E.S. Science College, Nanded using standard flora (Naik 1998)

Determination of Alkaloids: Five grams of ground sample was weighed into a 250 ml beaker, and 200 ml of 20% acetic acid in ethanol was added and was covered to stand for 4 h. This was filtered and the extract was concentrated using a water bath to evaporate one-quarter of the original volume. The concentrated ammonium solution was added drop-wise to the extract until the precipitation was completed. The entire solution was allowed to settle and the precipitate was collected by filtration, after which it was weighed (Harborne 2012).

Determination of Phenolics: Two grams of the sample were defatted with 100 ml of diethyl ether using a Soxhlet apparatus for 2 h. The fat free sample was boiled with a 50 ml of ether for 14 minutes. 5 ml of the extract was pipette into a 50 ml flask, and then 10 ml of distilled water was added. 2 ml of ammonium hydroxide solution and 5 ml of concentrated ethyl alcohol were also added. The sample was made up to mark and left to react for 30 min for colour development. The absorbance of the solution was read using visible spectrophotometer at 505 nm wavelength (Thimmaiah 1999).

Determination of Flavonoids: 5 grams of the ground plant sample was weighed in a 250 ml titration flask, and 100 ml of the 80% aqueous methanol was added at room temperature and shaken for 4 h in an electric shaker. The entire solution was filtered through Whatman filter paper no. 1 and again, this process was repeated. The filtrate as a whole was later transferred into a crucible and evaporated to dryness over a water bath and weighed (Boham and Kocipai-Abyazan 1974).

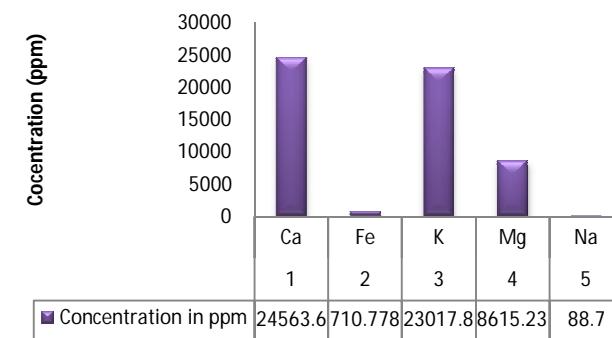
Estimation of Essential mineral elements: Plant sample was hydrolysed by strong acid and analysed with ICP-AES. All spectrometric measurements were performed with ICP spectrometer (Arcos from M/S Spectro Germany). The software used was smart analyser vision 5.01.0921. The detector is Charge Couple Device (CCD). ICP-AES method provide accurate elemental food composition data (Miller-Ihli 1996).

RESULT AND DISCUSSION

Estimation of Total Phenols, Alkaloids and Flavonoids: Phenolics, Alkaloids, Flavonoids are the

major nutraceutical and antioxidative ingredients in plant. *B.biterrata* found that appreciable amount of Alkaloids(34mg/gm), Phenolics(4 mg/gm) and Flavonoids (152 mg/gm). They are natural antioxidants and shown regulatory activity of hormones such as transport, metabolism (Amin Mir 2016). Presences of these phyto-compounds highlight its Nutraceutical value. The presence of phytoconstituents make the plant useful for treating different ailments and have a potential of providing useful drugs of human use.

Table 1: Estimation of Phenolics, Alkaloids and Flavonoids


Sr. No.	Phyto-constitute	Concentration(mg/gm)
1	Phenolics	4
2	Alkaloids	34
3	Flavonoids	152

Estimation of essential elements: Various essential elements of biological importance in human metabolism were found to be present (Table 2 and Chart-I). Most of essential elements which have active role in metabolic reaction in human body are present in good concentration. Calcium is an important mineral element for cell signalling, strong bones, teeth, maintains proper blood pressure and also for blood clotting. Its deficiency can lead to very serious problems like arthritis in old aged peoples. calcium concentration were estimated as highest than other elements 24563.60ppm which is followed by potassium (23017.80ppm), Magnesium (8615.23ppm), Iron an one of important minerals in defending anaemia related problems was found to be 710.778 ppm which is healthier for human consumption. Sodium concentration was found to be 88.70 ppm.

Table 2: Quantitative elemental analysis

Sr. No.	Elements	Concentration in ppm
1	Ca	24563.60
2	Fe	710.778
3	K	23017.80
4	Mg	8615.23
5	Na	88.70

Chart-I: Mineral Elements of Bidens biterrata

Figure 1: Estimation of Essential elements in *Bidens biterrata*

CONCLUSION

Bidens biternata has been found to contain nutrients and phytochemicals. Presence of important phytochemicals in appreciable amount highlights its nutraceutical and antioxidant properties. The plant contains essential elements in remarkable concentration for healthy consumption and hence can consider encouraging its use as mineral supplement. The present work supports its edible use and having good future prospective in nutrition.

REFERENCES

1. Ahmed AA, Saad MH, Haidar AAGM and Sami AAR (2016). Phytochemistry, Antimicrobial, Antigiardial and Antiamoebic Activities of Selected Plants from Albahe Area, Saudi Arabia.; BJMMR, 18(11): pp1-8.
2. Amin Mir M, Kajal Parihar, Uzma Tabasum and Ekata Kumari (2016). Estimation of alkaloid, saponin and flavonoid, content in various extracts of *Crocus sativa*; Journal of Medicinal Plants Studies; 4(5): 171-174.
3. Ashok Kumar, K Lakshman, Jayaveera KN, Mani Tripathi SN and Satish KV (2010). Estimation of Gallic acid, Quercetin and Rutin in *Terminalia chebula* by HPTLC; Jordan J. of Pharmaceutical Sci., 3(1): 63-67.
4. Bhatt JR, Singh JS, Singh SP, Tripathi RS, Kohli RK (2012); Invasive alien plants: an ecological appraisal for the Indian subcontinent. UK: CABI.
5. Boham BA, Kocipai-Abyazan R. (1974). Flavonoids and condensed tannins from leaves of Hawaiian *Vaccinium vaticulatum* and *V. Calycinum*; Pacific Science, 48: 458-463.
6. Defelice SL(1992). Nutraceuticals:Opportunities in an emerging market, Scrip. Mag. 9.
7. Dennis WK, Anne WM and Peter WM (2016); Freeze dried extracts of *bidens biternata* (lour.) merr. and sheriff. show significant antidiarrheal activity in -vivo models of diarrhea: Journal of Ethnopharmacology; Volume 193 (4), pp416-422.
8. Durre S, Sami U, Muhammad AR, Uzma S, Asma Y, Sadia G and Naeem A (2011); Acetylcholine esterase and antioxidant potential of some members of Asteraceae and Euphorbiaceae; Journal of Medicinal Plants Research Vol. 5(32), pp7011-7016.
9. Harborn JB (1973); Phytochemical methods – A guide to modern techniques of plant analysis, Chapman and Hill publication, pp1-56.
10. Maicon RK, Karina BF, Tatiana S, Luiz PLW, Maria HR, Eddyne G, Joana DF, Danilo WF, Rozangela CP (2008); Study of the antitumor potential of *Bidens pilosa* (Asteraceae) used in Brazilian folk medicine. J. Ethnopharmacol; 117: pp69-75.
11. Marathe Vishal R and Satish K Umate (2016). Estimation of Gallic acid, rutin and quercetin in *Portulaca quadrifida* L. A potential wild edible plant by HPTLC Method; Int. J. Of Life Sciences, 4(1), pp83-88
12. Masako H, Yoshiyuki S (2006); Antinflammatory and antiallergic activity of *Bidens pilosa* L. J. Health Sci., 52: pp711-717
13. Miller-Ihli NJ (1996) Trace Element Determinations in Foods and Biological Samples Using Inductively Coupled Plasma Atomic Emission Spectrometry and Flame Atomic Absorption Spectrometry; J. Agric. Food Chem., 44 (9), pp 2675-2679
14. Naik VN (1998) The Flora of Marathwada Vol. I and Vol. II, Amrut Prakashan, Aurangabad, M.S. (India).
15. Parimalakrishnan S, Akalanka D, Anton S, Arul GD, Manavalan R, Sridhar N (2006); Studies of anticancer and antipyretic activity of *Bidens pilosa* whole plant. Afr. Health Sci., 6(1): pp27-30.
16. Rajasekaran A, Sivagnanam G and Xavier R (2008). Nutraceuticals as therapeutic agents: A Review; Research Journal Pharm. and Tech., 1(4), 328-340.
17. Ratheesh Narayanan MK, N Anilkumar, V Balakrishnan, M Sivadasan, H Ahmed Alfarhan and AA Alatar (2011); Wild edible plants used by the Kattunaikka, Paniya and Kuruma tribes of Wayanad District, Kerala, India; Journal of Medicinal Plants Research Vol. 5(15), pp. 3520-3529.
18. Sandra MN, Clara L, Colin WW (2000); A review of antimycobacterial natural products. Phytother. Res; 14: pp303-322.
19. Shipra S, Jeet R, Nazir AP, P Tripathi and M Kumar (2014); Medicinal plant wealth of oak dominated forests in Nainital catchment area of Uttarakhand; Academia Journal of Medicinal Plants 2(1): pp006-013.
20. Sukumaran P, Nair AG, Chinmayee DM, Mini I, Sukumaran ST (2012); Phytochemical investigation of *Bidens biternata* (Lour.) Merr. And Sheriff.-a nutrient-rich leafy vegetable from Western Ghats of Indi; Appl Biochem Biotechnol; 167: pp1795-801.
21. Tapas AR, Sakarkar DM, Kakde RB (2008). Flavonoids as Nutraceuticals: A Review; Tropical Journal of pharmaceutical Research, September, 7(3) 1089-1099.
22. Thimmaiah SR (2012), Standard methods of biochemical analysis pp49-426

Source of Support: None Declared
Conflict of Interest: None Declared