

Original Research Article

Plants as a source of a novel anti-typhoid therapeutic agents: A Review

Nilesh V. More^{1*}, Shital M. Datkar¹, Rahul P. Bhagat², Vihang V. Patil¹

¹Department of Biotechnology, College of Computer Science and Information Technology, Latur 413512, Maharashtra, INDIA.

²Department of Biotechnology, Government Institute, Aurangabad, Maharashtra, INDIA.

Email: nileshm2002@gmail.com

Abstract

Typhoid fever is now becoming the deadly danger disease day by day because of the resistance power developed by *Salmonella typhi*, *Salmonella paratyphi A*, *Salmonella paratyphi B*; which cause typhoid fever, paratyphoid A and B fevers respectively. This situation has created a need to find more effective drugs. Natural products from microorganisms have been the primary source of antibiotics, and with the increasing acceptance of herbal medicines, the screening of medicinal plants for new active compounds has become a very important source of novel antibiotics. Alternative herbal medicine has been used to treat various infections from centuries. Natural plants contain phytoconstituents having similar chemical properties as of synthetic antibiotics. In future plants may be the source of effective treatments against typhoid and many more diseases.

Key Words: Typhoid, Medicinal plants, Herbal drugs, Anti-typhoid drugs.

*Address for Correspondence:

Dr. Nilesh V. More, 1Department of Biotechnology, College of Computer Science and Information Technology, Latur 413512, Maharashtra, INDIA.

Email: nileshm2002@gmail.com

Access this article online	
Quick Response Code:	Website: www.statperson.com
	Accessed Date: 10 March 2018

INTRODUCTION

Typhoid fever, which is caused by *Salmonella enterica* serovar Typhi, remains a major public health threat in developing countries. Approximately 13.5 million cases occur annually, and the disease was associated with 190 000 deaths worldwide in 2010.^{1,3} In developed areas, such as Europe and North America, the incidence of typhoid fever is very low, whereas in many developing countries, such as Africa, Latin America and South or Southeast Asia, the disease is endemic. For example, the annual incidence of typhoid fever has been as high as 573 cases per 100 000 individuals in Indonesia.^{1,2} Typhoid is a systemic disease characterized by fever and abdominal pain caused by dissemination of *S. typhi* or *S. paratyphi*.

The major route of entry in humans bloodstream and intestinal tract through *S. typhi* or *S. paratyphi* infected foods or drinking water(S) *Salmonella* is one of the genera of the Enterobacteriaceae family. Among the *Salmonellae* of medical importance are *Salmonella typhi*, *Salmonella paratyphi A*, *Salmonella paratyphi B*; which cause typhoid fever, paratyphoid A and B fevers respectively⁴. *Salmonella typhimurium* is the species responsible for typhoid fever in animal experimental models. Enteric fever remains an important public health problem in developing countries. There are approximately 22 million typhoid cases and 2,16,510 deaths occur per year globally with majority of cases occurring in Asia, especially in the Indian subcontinent^{5,6}. The disease is an invasive infection commonly caused by *Salmonella enterica* serovars Typhi and Paratyphi A. Enteric fever is endemic in many developing countries, including India and, if not treated appropriately, has a mortality rate of 30%. Appropriate treatment reduces the mortality rate to as low as 0.5%⁷. The common treatment options used for enteric fever are ciprofloxacin, ceftriaxone and cefixime⁸. It is also suggested that the specific treatment of enteric fever used to be chloramphenicol, trimethoprim-sulfamethoxazole or ampicillin and also found that the causative organism, *Salmonella enterica* serovar Typhi (*S. Typhi*) has rapidly gained resistance to these

antibiotics^{9,10} Now the currently used drugs against *S. Typhi* is fluoroquinolones, such as ciprofloxacin, became the drug of choice for the treatment of enteric fever¹¹. This situation has created a need to find more effective drugs. Natural products from microorganisms have been the primary source of antibiotics, and with the increasing acceptance of herbal medicines, the screening of medicinal plants for new active compounds has become a very important source of novel antibiotics⁴. Presently there are a great number of antibiotics available to treat microbial infections, however it has also been noticed that many infectious agents have attained resistance to several of these antibiotics. The countries in the region such as Malaysia, Indonesia, Brunei, and Thailand have a long history of using medicinal plant that proffers substantial pharmaceutical prospects¹². Ayurveda, the Indian system of natural medicine has been practiced for over two thousand years^{13,14}. The response of certain types of infections to antibiotics is poor. Ayurvedic formulations are usually prepared from root, stem, leaf, flower and fruits of medicinal plants. Various infections caused by bacteria, fungi, virus, parasite as well non-infectious metabolic disorders are effectively treated with herbal/Ayurvedic formulations¹⁵. *Paullinia pinnata* Linn (Sapindaceae) is a medicinal plant, locally used in the West Region of Cameroon for the treatment of typhoid fever. This work was designed to evaluate the antityphoid and antioxidant activities of the extracts and compounds of *P. pinnata*. Ethanolic extract of *propolis* was used to check the antibacterial potential of propolis in combination with the standard antibiotic Cefixime against the typhoid causing bacteria i.e. *Salmonella* and it was found that the *Propolis* acted synergistically with cefixime and enhanced the efficacy of antibiotic and reduced its effective dose in combined therapy.¹⁶ *Harungana madagascariensis* L is commonly used in Cameroonian folk medicine for the treatment of malaria and typhoid fever. The *in vivo* anti salmonellae study¹⁷ was carried out and found that *H. madagascariensis* has a promising anti-salmonellae effect and, therefore, the potential to provide an effective treatment against salmonellosis, including typhoid fever. Commonly used medicinal plants and vegetables not only posses the essential nutrients but also reported to contain secondary metabolites such as; alkaloids, flavonoids, glycosides, terpenoids and phenolics^{18,19}. *Glycyrrhiza glabra* and *Azadirachta indica* both plants extract is effective against salmonella typhi¹⁹. The *liquorice* and *neem* both are used as a traditional medicine all over the world. Methanol extracts of plant parts commonly used in Cameroon for the treatment of typhoid fever were tested for antibacterial activity against *Salmonella typhi*, *S. paratyphi* and *S. typhimurium*. The formulations used

were: 1) Formulation A comprising *Cymbogogon citratus* leaves, *Carica papaya* leaves, and *Zea mays* silk. 2) Formulation B comprising *C. papaya* roots, *Mangifera indica* leaves, *Citrus limon* fruit and *C. citratus* leaves. 3) *C. papaya* leaves. 4) *Emilia coccinea* whole plant. 5) *Comelina bengalensis* leaves. 6) *Telfaria occidentalis* leaves. 7) *Gossypium arboreum* whole plant. Antimicrobial activity was tested using the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) and concluded that, plant extracts with low MIC and MBC values (1 mg/ml and lower) may contain compounds with therapeutic activity.²⁰ Ethanol and hot water extracts of *V. doniana* (Root extract) and *A. boonei* (bark) had the best anti-typhoid activity in the Ebonyi state, Nigeria²¹. These plants were screened in-vitro for anti-typhoid activity against 10 clinically selected isolates of *S. typhi* using the hole-plate diffusion method. The Minimum inhibitory concentration (MIC) of Ethanol, hot and cold water extract of each herbal plant was determined by broth dilution method. According to the survey carried out in 2011²² in the the Wa Municipality and Wa East (Funsi) District of the Upper West Region of Ghana found that Twenty-one species from ten families were cited for the treatment of typhoid fever. All of the above mentioned review articles strongly suggested that the different parts of the plants have the potential to cure microbial infections and availed us the opportunity to produce the ayurvedic drugs. In all, 38 plants were searched as an anti typhoid and thus these plants must have possesses the anti typhoid compound/s. All the above mentioned article was tested the anti-typhoid potential of plants using the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). Few of the above mentioned articles isolated, characterized and identified the Plant compound/s responsible for the inhibition of growth for the *S. typhi* and *S. paratyphi*

MATERIALS AND METHODOLOGY

Research articles on antityphoid, typhoid therapeutic drugs and medicinal plants published in journals, books, and reports were reviewed. Relevant literatures were searched in Google Scholar and various electronic databases including NCBI PUBMED, Science Direct, IEEE Xplore, Scopus, SciFinder, and MEDLINE using a specific search terms including “antityphoid”, “medicinal plants”, “Typhoid”, “Typhoid India and therapeutic drugs”.

Collection of bacteria strains: In the above mentioned research articles the clinical isolates of *S. typhi* and *S. paratyphi* were isolated from patients and all Isolates was identified and characterized using standard microbiology technique²³.

Sources of plants and Preparation of plant extracts:

All plant materials were collected, identified and voucher specimen were kept in the herbarium for the further use during the experiment. Different part/parts of each medicinal plant/s were collected and properly washed and rinsed in sterile distilled water. It was allowed to dry under room temperature, pulverized using laboratory mortar and pestle and further with manual hand grinding machine and was stored in air tight containers for further analysis.

Extraction of plant materials: Plant materials were extracted with the different solvents like methanol, ethanol, cold and hot water, Each preparation was filtered using Whatman No 1 filter paper and was evaporated to dryness in a steady air current for 24 h in a previously weighed crucible.

Determination of anti-typhoid activity (In vivo therapeutic test and In-vitro): The different solvent extracts of each herbal plant was spot checked for anti-typhoid activity using the agar well diffusion method²⁴. After incubation the radial zones of inhibition was measured around each of the extract. Ciprofloxacin and chloramphenicol mainly was used as control antibiotics.

Ethical guidelines: The In vivo therapeutic test was conducted according to the ethical guidelines of Committee for Control and Supervision of Experiments on Animals, Government of India, on the use of animals for scientific research. The crude extract was used in the treatment of infected animals. Mostly *Salmonella typhimurium*-induced typhoid model in Whistar rat is used as an experimental model animal¹⁵

RESULTS

This review article was focused on the medicinal plants with respect to anti-typhoid compounds And the causative agents of typhoid its current status and the available treatments for typhoid. The common treatment options used for enteric fever are ciprofloxacin, ceftriaxone and cefixime⁸ Now the currently used drugs against *S. Typhi* is fluoroquinolones, such as ciprofloxacin, became the drug of choice for the treatment of enteric fever¹¹. 26 research articles was reviewed and found that plants from the different regions of the world have the anti-typhoid potential. Very few research articles^{25,15} identified the anti-typhoid compounds from the different part/s of the plant/s whereas other researchers only showed the anti-typhoid activity of medicinal plants on the basis of zone of inhibition against the causative organisms mentioned above and some of them also illustrates the In vivo therapeutic potentiality of crude extracts of plants on experimental animals like Whistar rat¹⁵. Total 38 plants from different families and different geographical regin was found to have antityphoid potentiality.

CONCLUSION

Typhoid fever, which is caused by *Salmonella enterica* serovar *Typhi*, remains a major public health threat in developing countries. The common treatment options used for enteric fever are ciprofloxacin, ceftriaxone and cefixime⁸. Vaccination is also the treatment for the typhoid. Considering the side effects of the allopathic drugs on human health, its necessary to develop the alternate route to develop the drugs from plants. This review article very clearly explain the methods used by researchers in order to develop the Ayurvedic drugs like agar well diffusion, micro broth dilution, extraction of plants compounds, purification of crude extracts and In vivo therapeutic plants extract activity using experimental animals.

REFERENCES

1. Buckle GC, Walker CL, Black RE. Typhoid fever and paratyphoid fever: systematic review to estimate global morbidity and mortality for 2010. *J Glob Health* 2012; 2: 010401.
2. Crump JA, Luby SP, Mintz ED. The global burden of typhoid fever. *Bull WHO* 2004; 82: 346–354.
3. Ochiai RL, Acosta CJ, Danovaro-Holliday MC et al. A study of typhoid fever in five Asian countries: disease burden and implications for controls. *Bull Word Health Organ* 2008; 86: 260–268.
4. Kadhiravan T, Wig N, Kapil A, Kabra S, Renuka K, Misra A. Clinical outcomes in typhoid fever: adverse impact of infection with nalidixic acid-resistant *Salmonella Typhi*. *BMC Infectious Diseases*. 2005; 5: 37. PMID: 15904505
5. Crump JA, Sjölund-Karlsson M, Gordon MA, Parry CM. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive *Salmonella* infections. *Clin Microbiol Rev*. 2015; 28(4): 901–37. doi: 10.1128/CMR.00002-15 PMID: 26180063
6. Crump JA, Luby SP, Mintz ED (2004) The global burden of typhoid fever. *Bull World Health Organ* 82: 346–353. PMID: 15298225
7. Cooke FJ, Wain J (2004) The emergence of antibiotic resistance in typhoid fever. *Travel Med Infect Dis* 2:67–74.
8. Adedapo AA, Jimoh FO, Koduru S, Afolayan AJ, Masika PJ. Antibacterial and antioxidant properties of the methanol extracts of the leaves and stems of *Calpurnia aurea*. *BMC Complement Altern Med*. 2008; 8:53–7.
9. Jesudason MV, John TJ (1992) Plasmid mediated multidrug resistance in *Salmonella Typhi*. *Indian J Med Res* 95:66-67.
10. Butt T, Ahmad RN, Mahmood A, Zaidi S (2003) Ciprofloxacin treatment failure in typhoid fever case, Pakistan. *Emerg Infect Dis* 9:1621-1622.
11. Eykyn SJ, Williams H (1987) Treatment of multiresistant *Salmonella typhi* with oral ciprofloxacin. *Lancet* ii, 1407–1408

12. R. Mitra, S. Agricola, B. Mitchell, J. Orbello, C. Gray, and M.S. Muralitharan, "Medicinal plants of Thailand," *Asia-Pacific Biotech News*, vol. 11, no. 8, pp. 508–518, 2007.
13. Rosas-Pinon, Y.; Meija, A.; Diaz-Ruiz, G.; Aguilar, M.L.; Sanchez-Nieto, S.; Rivero-Cruz, J.F. Ethanobotanical survey and antibacterial activity of plants used in the altiplane region of Mexico for the treatment of oral cavity infections. *J. Ethnopharmacol.* 2012, 141, 860–865. [CrossRef] [PubMed]
14. Gupta, R.; Ingale, N.A.; Kaur, N.; Yadav, P.; Ingle, E.; Charania, Z. Ayurveda in dentistry a Review. *J. Int. Oral Health* 2015, 7, 141–143. [PubMed]
15. Sharma, K.; Joshi, N.; Goyal, C. Critical review of Ayurvedic varnya herbs and their tyrosinase inhibition effect. *Anc. Sci. Life* 2015, 35, 18–25. [CrossRef] [PubMed]
16. Preeti Kalia, Neelima R. Kumar and Kusum Harjai.; Studies on the therapeutic effect of propolis along with standard antibacterial drug in almonella enterica serovar Typhimurium infected BALB/c mice. *BMC Complementary and Alternative Medicine* (2016) 16:485 DOI 10.1186/s12906-016-1474-5
17. FabriceKengni, Siméon P.C.Fodouop, Donald S.Tala, Merline N.Djimeli, CharlesFokunang and Donatien Gatsing. Antityphoid properties and toxicity evaluation of Harungana madagascariensis Lam (Hypericaceae) aqueous leaf extract. *Journal of Ethnopharmacology* Volume 179, 17 February 2016, Pages 137-145.
18. Cai YZ, Luo Q, Sun M, Corke H, (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. *Life Sci* 74: 2157–2184.
19. Somia Gul, Asma Erraj and Zehra Ashra.Glycyrrhiza glabra and Azadirachta indica against *Salmonella Typhi*: Herbal Treatment as an Alternative Therapy for Typhoid Fever. *ARCHIVES OF MEDICINE* 2015 Vol. 7 No. 6:4
20. Nkuo-Akenji T, Ndip R, McThomas A and Fru EC. Anti-Salmonella activity of medicinal plants from Cameroon. *Cent Afr J Med.* 2001 Jun;47(6):155-8
21. Iroha I. R, ILang D. C., Ayogu T. E., Oji A. E. and Ugbo E. C. Screening for anti-typoid activity of some medicinal plants used in traditional medicine in Ebonyi state, Nigeria. *African Journal of Pharmacy and Pharmacology* Vol. 4(12), pp. 860-864, December 2010 Available online <http://www.academicjournals.org/ajpp> ISSN 1996-0816 ©2010 Academic Journals.
22. Sam, G.H., Mensah, M.L.K., Annan, Kofi and Sena Zahree. Plants Traditionally Used in Treating Malaria, Typhoid Fever and Piles in the Wa Municipality and Wa East (Fensi) District of the Upper West Region of Ghana. *Advances in Environmental Biology*, 5(10): 3352-3358, 2011 ISSN 1995-0756
23. Chessbrough M. (2000) Medical laboratory manual for tropical countries, Linacre house, Jordan hill, oxford, 260 pp.
24. Murray PR, Baroone EJ, Pfaller MA, Tenover FC, Yolke RH. Organic and aqueous extracts of *C. angustifolia* were screened for antibacterial and antifungal potential by disk diffusion assay as previously reported Manual of clinical microbiology. 6th ed. Washington DC: American Society for Microbiology; 1995. 19
25. Newton SM, Lau C, Gurcha SS, Besra GS, Wright CW (2002) The evaluation of forty-three plant species for in vitro antimycobacterial activities; isolation of active constituents from *Psoralea corylifolia* and *Sanguinaria canadensis*. *J Ethnopharmacol* 79(1):57–67

Source of Support: None Declared

Conflict of Interest: None Declared