

Original Research Article

Isolation, characterization and biodiversity of actinomycetes from rhizosphere soil of some medicinal plants

Raut R A, Kulkarni S W

Research Department of Microbiology, Shriman Bhausaheb Zadbuke Mahavidyalaya, Barshi, Dist. Solapur, Maharashtra, INDIA.

Email: rautradha1@gmail.com, swk1959@rediffmail.com

Abstract

The actinomycetes are strange group of organisms in bacterial taxonomy. Actinomycetes are widespread in all type of soils. The present study focus on biodiversity of actinomycetes from rhizosphere soils of some medicinal plants which are available at local area of Barshi, Dist. Solapur. M.S, India. The rhizosphere soil of medicinal plants were screened for the study of actinomycetes. Rhizosphere soil of medicinal plants viz ; *Aloe barbadense*, *Emblica officinalis*, *Zingiber officinale*, *Tinospora cardifolia*, *Nerium oleander*, *Eucalyptus camaldulensis*, *Mentha arvensis*, *Santalum album*, *Hibiscus – rosa- sinensis*, *Ocimum sanctum* and *Curcuma longa* were used for screening of actinomycetes. Serial dilution technique was used for the isolation of actinomycetes using Glycerol asparagine agar as a nutrient medium. Total seventy- one isolates were obtained. These isolates were studied morphologically, culturally and biochemically. The obtained isolates were identified as actinomycetes by MICRO – IS software and also 16sRNA. Among these majority of isolates belonged to *Streptomyces* (70%), *Streptoverticillium* (9%), *Nocardia* (7%), *Micromonospora* (4%), and *Micropolyspora* (10%).

Key Words: Actinomycetes, Medicinal plants, *Streptomyces*, Rhizosphere soil.

*Address for Correspondence:

Raut R. A., Research Department of Microbiology, Shriman Bhausaheb Zadbuke Mahavidyalaya, Barshi, Dist. Solapur, Maharashtra, INDIA.

Access this article online

Quick Response Code:

Website:
www.statperson.com

Accessed Date:
10 March 2018

(Kennedy,1999), is a site of high microbial activity in and around roots in soil (Sorenson, 1997). India is one of the richest plant medical cultures in the world and considers “all” plants as potential sources of medicinal substances. Rhizosphere soil of medicinal plants can serve as an important source of pharmaceutically valuable microorganisms. Actinomycetes are prokaryotic organisms and called as “ray bacteria”. They are widely distributed in soil next to bacteria in abundance. Actinomycetes are free living, Gram- positive organisms in nature and are known as saprophytic soil inhabitants (Takizawa *et al.*, 1993). Actinomycetes are unicellular like bacteria which shows fungus like characteristics with branching filaments in culture or tissue. On culture media actinomycetes colonies grow slowly, show powdery consistency and stick firmly to agar surface. They are also responsible for earthy or musty odor. Actinomycetes plays an extremely useful role in degradation of waste material and as an integrant part of the recycling of materials in nature (Kulkarni and Deshmukh, 2002). The richly diverse flora and fauna of India provided a wealth of medicinal substances. Human have used their local plants for medicinal effects since prehistoric times. In literature, there are few reports on microorganisms from rhizosphere of medicinal plants. For the present study

INTRODUCTION

Soils are major support system of human life and welfare. Different kind of soils are spread across different landscapes having complex mixture of mineral matter, organic matter and living organisms. The major groups of microorganisms are bacteria, fungi, actinomycetes, protozoa and soil nematodes. These soil biota show vast variation quantitatively and qualitatively in different sites of collection and at different depths. Actinomycetes from rhizosphere soils are quantitatively and qualitatively important and numerous in plant rhizosphere than away from roots. The rhizosphere is defined as a narrow zone, adjacent to and influenced by living plant root

locally available medicinal plants are selected and rhizosphere soil of these plants have been screened for the study of actinomycetes for example - *Aloe barbadense*, *Emblica officinalis*, *Zingiber officinale*, *Tinospora cardifolia*, *Nerium oleander*, *Eucalyptus camaldulensis*, *Mentha arvensis*, *Santalum album*, *Hibiscus – rosa-sinensis*, *Ocimum sanctum* and *Curcuma longa*.

MATERIAL AND METHODS

1. Rhizosphere soils from selected medicinal plants available at local area of Barshi, Dist. Solapur, M.S India.
2. Glycerol asparagine agar.

METHODS

1. Collection of soil samples – soil samples were collected at depth of 10-20 cm from selected medicinal plants.
2. Isolation of actinomycetes – For the present study eleven soil samples of medicinal plants viz; *Aloe barbadense* (Aloevera), *Emblica officinalis* (Avala), *Zingiber officinale* (Ginger), *Tinospora cardifolia* (Gulvel), *Nerium oleander* (Nerium), *Eucalyptus camaldulensis* (Nilgiri), *Mentha arvensis* (Pudina), *Santalum album* (Sandal), *Hibiscus – rosa- sinensis* (Shoeflower), *Ocimum sanctum* (Tulasi) and *Curcuma longa* (Turmeric) from local area of Barshi, Dist. Solapur M.S.India were collected. Collected samples were serially diluted and aliquots of dilution were transferred to glycerol asparagine agar (L-asparagine – 0.1g, K₂HPO₄-0.1, Glycerol -1g, Trace salt solution -0.1 ml, Agar-2.5 g, Distilled water- 100ml, pH -7.4). The plates were incubated at room temperature for 4-7 days.
3. Identification of actinomycetes – Tough colonies were selected and identified as actinomycetes with the help of cultural, morphological and biochemical studies up to genus level by using

Table 1: Distribution of actinomycetes isolates in various rhizosphere soil samples of medicinal plants.

Sr. No	Medicinal plants	Number of actinomycetes isolates belonging to genus				
		Str.	Strv.	Noc.	Mm.	Mpol.
1	<i>Aloe barbadense</i> (Aloe Vera-AL)	4	1	1	-	1
2	<i>Emblica officinalis</i> (Avala-AV)	2	1	1	1	1
3	<i>Zingiber officinale</i> (Ginger-GI)	5	1	-	-	-
4	<i>Tinospora cardifolia</i> (Gulvel-GL)	7	-	-	-	-
5	<i>Nerium oleander</i> (Nerium-NE)	2	1	1	1	1
6	<i>Eucalyptus camaldulensis</i> (Nilgiri-NI)	4	1	-	1	1
7	<i>Mentha arvensis</i> (Pudina-PD)	5	1	-	-	-
8	<i>Santalum album</i> (Sandal-SD)	4	1	1	-	-
9	<i>Hibiscus–rosa sinensis</i> (Shoeflower-SH)	5	-	-	1	1
10	<i>Ocimum sanctum</i> (Tulasi-TL)	3	1	-	1	1
11	<i>Curcuma longa</i> (Turmeric -TR)	6	1	-	-	-
Total and (%)		47 (%)	09 (%)	04(%)	05(%)	06 (%)

Str = *Streptomyces*, Strv. = *Streptoverticillium*, Noc. = *Nocardia*, Mm = *Micromonospora*, Mpol= *Micropolyphora*.

Bergey's Manual of Systematic Bacteriology volume 4. The morphological characters were observed by coverslip culture technique and slide culture technique for actinomycetes.

Coverslip culture technique – This technique also called as "inclined coverslip technique". For the study of morphological characteristics with reference to aerial mycelium, substrate mycelium and sporulation this technique were used. The isolate were cultivated on Glycerol asparagine agar, sterile coverslip was inserted at angle of about 45°C into a solidified medium in a Petri dish so that the half the coverslip is in the medium. The inoculum was spread along the line, where the upper surface of the coverslip meets the agar, with a fine wire needle and plates were incubated at ambient temperature for 7 days. After incubation period the isolates were grown on both, the medium and coverslip. The coverslip was carefully withdrawn from the microscope to differentiate between substrate and aerial mycelium. The observation were also recorded about the presence of colour of spore mass (grey, blue, red, violet, yellow or white), spore chain morphology (rectiflexibles, spirals or retinaculaperti) and presence of sclerotia. Total isolates were identified as actinomycetes with the help of MICRO-IS Software and also 16srRNA.

RESULTS AND DISCUSSION

Total seventy-one isolates were obtained from eleven rhizosphere soil samples collected from *Aloe barbadense*, *Emblica officinalis*, *Zingiber officinale*, *Tinospora cardifolia*, *Nerium oleander*, *Eucalyptus camaldulensis*, *Mentha arvensis*, *Santalum album*, *Hibiscus – rosa-sinensis*, *Ocimum sanctum* and *Curcuma longa* etc. All isolates code were labelled according to their vernacular name in short form. Eleven medicinal plants were selected according to their medicinal compounds present for therapeutic purpose.

Distribution of actinomycetes in various rhizosphere soil samples of some medicinal plants is given to Table 1 and they belongs to genus *Streptomyces*, *Streptoverticillium*, *Nocardia*, *Micromonospora* and *Micropolyspora*. *Streptomyces* is best known genus and found commonly in any type of soil. *Streptomyces* were obtained more from all medicinal plants rhizosphere soil samples. As compare to *Streptomyces*, the percentage of *Streptoverticillium* was quiet less. They were found in all medicinal rhizosphere soil except *Tinospora cardifolia* and *Hibiscus-rosa-sinensis*. The results were showed that, the percentage of *Nocardia* was less than these above mentioned genera. *Nocardia* was obtained from *Aloe barbadense*, *Emblica officinalis*, *Nerium oleander* and *Santalum album* in lower extent. *Micromonospora* were obtained from only *Emblica officinalis*, *Nerium oleander*, *Eucalyptus camaldulensis*, *Hibiscus-rosa-sinensis* and *Ocimum sanctum*. *Micropolyspora* were obtained in less percentage as compared to all genera. These were obtained from only *Aloe barbadense*, *Emblica officinalis*, *Nerium oleander*, *Hibiscus rosa-sinensis* and *Ocimum sanctum*.

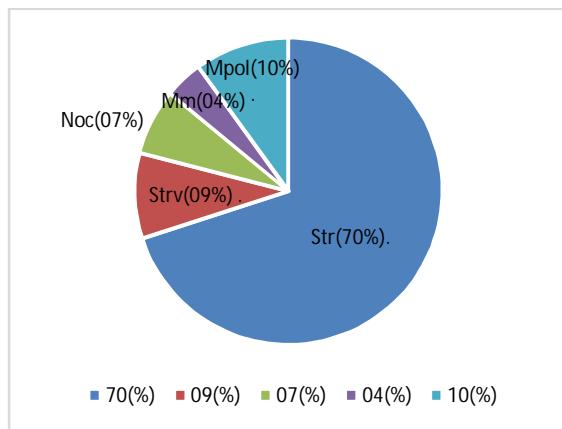


Figure 1: Percentage of actinomycetes isolates from medicinal rhizosphere soil

1st Qtr. =*Streptomyces*, 2nd Qtr. =*Streptoverticillium*, 3rd Qtr. =*Nocardia*, 4th Qtr. =*Micromonospora*, and 5th Qtr. = *Micropolyspora*. Out of seventy-one actinomycetes majority of isolates were identified as *Streptomyces* (70%). On the other hand isolates belonging to *Streptoverticillium* (09%), *Nocardia* (07%), *Micromonospora* (04%) and *Micropolyspora* (10%). Figure 1 explains the generic distribution of actinomycetes in different medicinal plants rhizosphere soil. *Streptomyces* are found in numerous in rhizosphere soil of medicinal plants than away from root and have

been poorly studied as biocontrol agents (Thangapandian et.al, 2007).

Figure 2: Plate 1 Isolation of actinomycetes on Glycerol asparagine agar

Figure 3: Plate 2 – Coverslip culture technique for actinomycetes

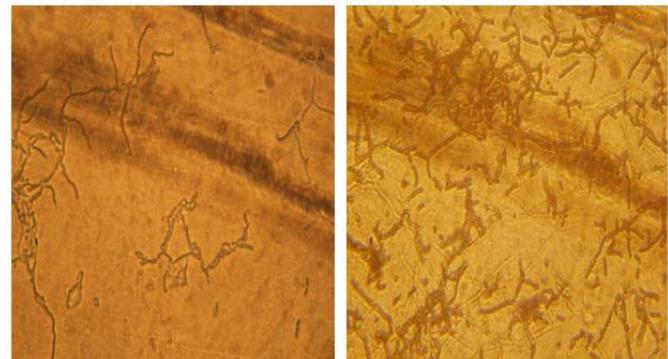


Figure 4: Plate 3 Plate 4

Plate 1 and 2 shows isolation of actinomycetes on glycerol asparagine agar and slide culture technique respectively. Glycerol asparagine agar is best medium for growth of actinomycetes. The microscopic examination of actinomycetes seen in Plate 3 and 4.

Table 2: Identification of actinomycetes isolates by using MICRO-IS PIBWIN Software

Sr. No	Medicinal plants	Isolate code	Score as per MICRO-IS PIBWIN Software	Actinomycetes identified as
1.	<i>Aloe barbadense</i>	AL1	0.97823	<i>Streptomyces chattanoogensis</i>
2.		AL2	0.94134	<i>Streptomyces celluloseae</i>
3.		AL3	**	<i>Streptomyces enissocaesilis</i>
4.		AL4	*	<i>Nocardia sp.</i>
5.		AL5	0.99473	<i>Streptoverticillium olivoverticillatum</i>
6.		AL6	*	<i>Micropolyspora sp.</i>
7.		AL7	0.91165	<i>Streptomyces fulvissimus</i>
8.		AV1	0.99913	<i>Streptomyces chattanoogensis</i>
9.		AV2	0.99954	<i>Streptoverticillium olivoverticillatum</i>
10.		AV3	*	<i>Nocardia sp.</i>
11.	<i>Emblica officinalis</i>	AV4	*	<i>Micropolyspora sp.</i>
12.		AV5	0.99867	<i>Streptomyces xanthochromogenes</i>
13.		AV6	*	<i>Micromonospora sp.</i>
14.		GI1	0.93699	<i>Streptomyces chattanoogensis</i>
15.		GI2	0.99694	<i>Streptomyces aureofaciens</i>
16.		GI3	0.92589	<i>Streptomyces antibioticus</i>
17.		GI4	0.99941	<i>Streptoverticillium olivoverticillatum</i>
18.		GI5	0.92748	<i>Streptomyces fulvissimus</i>
19.		GI6	0.93885	<i>Streptomyces flaveolus</i>
20.		GL1	0.99920	<i>Streptomyces thermovulgaris</i>
21.	<i>Tinospora cardifolia</i>	GL2	0.99945	<i>Streptomyces roseus</i>
22.		GL3	0.99867	<i>Streptomyces xanthochromogenes</i>
23.		GL4	0.91536	<i>Streptomyces celluloseae</i>
24.		GL5	0.91467	<i>Streptomyces fulvissimus</i>
25.		GL6	0.99069	<i>Streptomyces chattanoogensis</i>
26.		GL7	0.93351	<i>Streptomyces olivaceoviridis</i>
27.		NE1	0.93885	<i>Streptomyces flaveolus</i>
28.		NE2	0.90421	<i>Streptomyces chattanoogensis</i>
29.		NE3	0.98677	<i>Streptoverticillium olivoverticillatum</i>
30.	<i>Nerium oleander</i>	NE4	*	<i>Nocardia sp.</i>
31.		NE5	*	<i>Micropolyspora sp.</i>
32.		NE6	*	<i>Micromonospora sp.</i>
33.		NI1	0.98605	<i>Streptomyces fulvissimus</i>
34.		NI2	**	<i>Streptomyces flavoviridis</i>
35.		NI3	0.98592	<i>Streptomyces thermovulgaris</i>
36.		NI4	0.99927	<i>Streptoverticillium olivoverticillatum</i>
37.	<i>Eucalyptus camaldulensis</i>	NI5	0.93189	<i>Streptomyces chattanoogensis</i>
38.		NI6	*	<i>Micromonospora sp.</i>
39.		NI7	*	<i>Micropolyspora sp.</i>
40.		PD1	0.99927	<i>Streptoverticillium olivoverticillatum</i>
41.		PD2	0.89909	<i>Streptomyces alboflavus</i>
42.		PD3	0.98013	<i>Streptomyces thermovulgaris</i>
43.	<i>Mentha arvensis</i>	PD4	0.97823	<i>Streptomyces chattanoogensis</i>
44.		PD5	*	<i>Micromonospora sp.</i>
45.		PD6	0.99843	<i>Streptomyces aureofaciens</i>
46.		SD1	0.91452	<i>Streptomyces microflavus</i>
47.		SD2	0.93914	<i>Streptomyces thermovulgaris</i>
48.		SD3	0.96095	<i>Streptomyces chattanoogensis</i>
49.		SD4	0.94469	<i>Streptomyces aureofaciens</i>
50.	<i>Santalum album</i>	SD5	0.99950	<i>Streptoverticillium olivoverticillatum</i>
51.		SD6	*	<i>Nocardia sp.</i>
52.		SH1	0.94030	<i>Streptomyces fulvissimus</i>
53.	<i>Hibiscus-rosa-sinensis</i>	SH2	0.92589	<i>Streptomyces antibioticus</i>

54.		SH3	*	<i>Micropolyspora</i> sp.
55.		SH4	*	<i>Micromonospora</i> sp.
56.		SH5	0.93469	<i>Streptomyces aureofaciens</i>
57.		SH6	0.92502	<i>Streptomyces olivaceoviridis</i>
58.		SH7	0.97378	<i>Streptomyces chattanoogensis</i>
59.		TL1	0.99927	<i>Streptoverticillium olivoverticillatum</i>
60.		TL2	*	<i>Micromonospora</i> sp.
61.		TL3	0.92469	<i>Streptomyces aureofaciens</i>
62.	<i>Ocimum sanctum</i>	TL4	0.96092	<i>Streptomyces chattanoogensis</i>
63.		TL5	0.94959	<i>Streptomyces cellulosae</i>
64.		TL6	*	<i>Micropolyspora</i> sp.
65.		TR1	0.89469	<i>Streptomyces aureofaciens</i>
66.		TR2	0.97524	<i>Streptomyces chattanoogensis</i>
67.		TR3	0.91737	<i>Streptomyces antibioticus</i>
68.	<i>Curcuma longa</i>	TR4	0.99473	<i>Streptoverticillium olivoverticillatum</i>
69.		TR5	0.91409	<i>Streptomyces fulvissimus</i>
70.		TR6	0.96843	<i>Streptomyces poorensis</i>
71.		TR7	0.92469	<i>Streptomyces aureofaciens</i>

* = Identification of isolate by using Bergey's Manual of Determinative Bacteriology (Vol-4)

** = Identification of isolate by Phylogenetic analysis (16srRNA Sequencing Report)

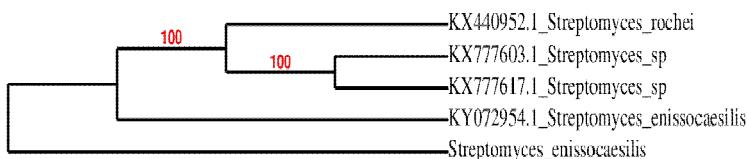


Figure 2: Phylogenetic tree of AL3 isolate by 16srRNA analysis.

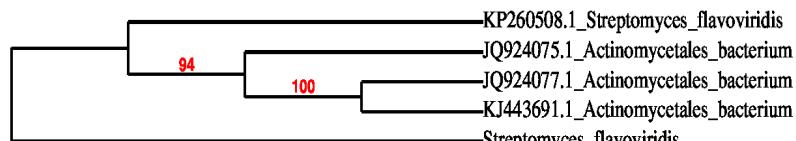


Figure 3: Phylogenetic tree of NI2 isolate by 16srRNA analysis

Isolated actinomycetes were identified by using MICRO-IS Software and Bergey's Manual Of Determinative Bacteriology (vol-4) on the basis of their morphological, cultural and biochemical characteristics. Members of *Streptomyces* genus were identified by using PIB WIN Software. Table 2 represents identification of actinomycetes from medicinal rhizosphere soil. Out of Seventy-one isolates studied fifty-five isolates were identified upto species level while remaining sixteen were identified up to genus level. Actinomycetes are more numerous in plant rhizosphere than away from root. The actinomycetes in rhizosphere soil of medicinal plants have a both higher and lower occurrences depending on the species (McCarthy and Williams, 1990). *Streptomyces* and *Nocardia* are abundant in the rhizosphere of plant stabilizing and dunes (Webley *et al.*, 1952). The flora of Indian medicinal

plants is rich in biodiversity and product from these plants as medicines though neglected in the recent past are now gaining importance again. Actinomycetes are a valuable resource for drugs. In literature there are very few reports on actinomycetes from rhizosphere of medicinal plant such as *Aloe barbadense* (*Aloe vera*), *Curcuma longa* (*Turmeric*), *Eucalyptus camaldulensis* (*Nilgiri*), *Santalum album* (*Sandal*), *Mentha arvensis* (*Pudina*) etc. This study gives clear idea about rhizosphere soil as an important source for the research of a large number of actinomycetes.

REFERENCES

1. Alexander (1961), Introduction of Soil Microbiology, John Wiley and sons Inc. New York.

2. Atkinson D. and Watson, C.A (2000). The beneficial rhizosphere. A dynamic entity App.Soil Ecol.15:99-104.
3. Bergey's Manual of Systematic Bacteriology Vol.4
4. Curl, E.A and Truelove, A (1986). The rhizosphere Springer Verlag, Adv., Agric.Svi.15:288.
5. Gangwar, M.J., Dogra, S., Gupta, U.P. and Kharwar, R.N., (2014). Diversity and biopotential of endophytic actinomycetes from three medicinal plants in India. Afr. J. Microbiol.Res., 8:184-191.
6. Kennedy A.C (1999). The rhizosphere and Sermosphere, In: Principles and application of soil microbiology (Eds: D.M, Sylvia), J.J Fuhrmann, P.G. Hartel and D.A.Zuberer).
7. Kulkarni S.W and Deshmukh (2002) Ecology of actinomycetes in current topics in environmental science. Publisher –ABD publisher, Delhi pp.482 to 494.
8. Kumar, U., Singh, A. and Sivakumar, T. (2011). Isolation and screening of endophytic actinomycetes from different parts of *Embla officinalis*.Ann.Biol.Res. 2(4):423-434.
9. Kuzner, H.J (1968). Isolation and characterization of novel actinomycetes strain, Forch.21:48-61.
10. MacCarthy, A.J, Williams, S.T (1990). Method for studying the ecology of actinomycetes, Methods microbial.22:533-563.
11. Panaiyadiyan P, Chellaia, SR, "Biodiversity of microorganisms isolated from rhizosphere soils of Pachamalai Hills, Tamilnadu, India," Research Journal of Forestry, vol. 5, no 1. pp. 27-35, 2011.
12. Sorensen. (1997). the rhizosphere as a habitat for soil microorganisms in: modern soil microbiology (Eds: J.D. Van Elas, J.T) Marcel Dekker, New York, pp.21-45.
13. Takizawa.M., Colwell RR, (1993) Isolation and diversity of actinomycetes in the Chesapeake Bay. Appl Environ microbial. 59 (4):997-1002.
14. Tangapandion, V., Ponnuragan, P, (2007). Actinomycetes diversity in the rhizosphere soil of different medicinal plants in kolly Hills Tamilnadu, India, for secondary metabolite production Asian J. plant Sci 6. (1): 66-70.
15. Webley D.M., Eastwood D.J., and C.H. Gimingham (1952). Development of a soil microflora in relation to plant succession sand dunes, including the "rhizosphere" flora associated with colonizing species.J. Ecol: 168-178.

Source of Support: None Declared
 Conflict of Interest: None Declared