

Reconstruction of the chronic rupture of achilles tendon with peroneus brevis tendon augmentation

Nishant Gaonkar^{1*}, Pravin Patil¹, Ketan Gupta², Himanshu Kulkarni³, Nirav Patel³

¹Assistant Professor, ²Senior Resident, ³Resident, Department of Orthopedics, Krishna Hospital and Krishna Institute of Medical Sciences, Karad- 415110, Maharashtra, INDIA.

Email: dr.ngaonkar@gmail.com

Abstract

Achilles tendon ruptures have been estimated to be one of the most common tendon ruptures. End to end suturing of ruptured edges in fresh tears is gold standard, but the optimal management of chronic ruptures of the Achilles tendon is surgical reconstruction. We present our method of reconstruction for the chronic rupture of Achilles tendon using peroneus brevis through a standard para- midline incision. The management of tears of the Achilles tendon by peroneus tendon transfer is safe but technically demanding. It offers good recovery, even in patients with a long-term neglected rupture. This tendon transfer being a vascular dynamic structure allows complete excision of scar tissue along with degenerated and calcific tendon and poses less chances of skin flap complications with excellent functional outcome.

Keywords: Achilles tendon ruptures, reconstruction, peroneus brevis transfer, neglected TA rupture.

*Address for Correspondence:

Dr. Nishant Gaonkar, Assistant Professor, Department of Orthopedics, Krishna Hospital and Krishna Institute of Medical Sciences, Karad- 415110, Maharashtra, INDIA.

Email: dr.ngaonkar@gmail.com

Received Date: 14/12/2014 Revised Date: 23/12/2014 Accepted Date: 30/12/2014

Access this article online	
Quick Response Code:	Website: www.statperson.com
	DOI: 01 January 2015

INTRODUCTION

About 20% of complete ruptures of the AT are diagnosed late. The management of chronic ruptures of tendo Achillis is usually different from that of acute rupture as tendon migrates upwards due to contracture and scar tissue grows between ruptured ends¹. This gap between ruptured ends is bigger in our patients due to habit of squatting which brings the foot in a dorsiflexion, widening the separation.⁴ The blood supply to this area is relatively poor, and the tendon ends have to be freshened to allow healing. Due to the increased gap, primary repair is not generally possible. Operative procedures for filling this gap include flap tissue; turn down using flaps, local tendon transfer, and autologous hamstring tendon harvesting. The peroneus brevis transfer being a vascular

dynamic structure allows complete excision of scar tissue and good tensile strength, was graft of choice.⁵

CASE REPORT

55 years old male patient came with complaints of difficulty while walking since 4 months. On examination, plantar flexion at ankle was absent, and Thompson's squeeze test and Matles test were positive. X rays were done and revealed no abnormality. USG showed chronic rupture of right tendoachillis. During procedure, pre-operative anatomical markings were done at the palpable tendon defect, at both malleoli and the base of the fifth metatarsal. A lateral para median incision was taken just alongside the tendon. Sural nerve was identified and retracted carefully.

Figure 1: Proximal stump exposed, sural nerve identified

The small distal Achilles tendon stump at calcaneal attachment was identified and the end was freshened up. The proximal tendon was mobilised from the above, adhesions were divided, and further soft tissue release anterior to the soleus and gastrocnemius was done to minimize the gap between the two tendon stumps. The end of this stump was freshened up too. The tendon of peroneus brevis was harvested through mini incision at base of 5th Metatarsal. It was detached from the attachment and then was confirmed through the main incision by pulling the proximal part so that the tendon of peroneus brevis only could be withdrawn. The muscular portion of peroneus brevis was then mobilized proximally to allow increased excursion of the tendon of peroneus brevis, and tendon was pulled out through proximal incision.

Figure 2: Peronius Brevis tendon harvested through a stab incision at base of 5th Metatarsal

The posterior tuberosity of the calcaneum was well exposed for drilling. A transverse portal was drilled through the tuberosity from medial to lateral side. The withdrawn peronius brevis tendon was then sutured to lateral border of proximal and distal stump with heavy absorbable sutures and some non absorbable sutures and was passed through the drilled hole from lateral to medial side. It was then sutured again to medial borders of distal and proximal stumps to complete a rectangle.

Figure 3: Peroneus brevis sutured to proximal and distal stump with absorbable and non absorbable sutures

The stability was confirmed by slight dorsiflesion and plantar flexion of ankle. Closure was done with vicryl 2.0 and ethilon 3.0 of both the wounds taking a complete precaution of viability of skin and covering the tendoachillis to prevent further complications like adhesions. Ankle joint was further immobilized with an

above knee dorsal slab with ankle in 20 degrees of plantar flexion. Suture removal was done on 15th day post operatively. Slab was converted into a below knee cast for 5 weeks. Cast was removed 5 weeks later and full weight bearing was allowed. The wound was completely healed and squeeze test was negative with active plantar and dorsiflexion at the end of 6 weeks.

Figure 4: Active plantarflexion and dorsiflexion at the end of 6 weeks

DISCUSSION

Achillis tendon is one of the most frequently ruptured tendon and no other tendon suffers complete rupture more often.^{5,6} The incidence of spontaneous complete rupture of achillis tendon has risen steadily in last few decades due to increased sedentary life style and intermittent participation in recreational sports. Upto 25% of all cases are misdiagnosed with serious consequences to the patient.^{7,8} The site of tendon rupture is usually 2 to 6 cm above the tendon insertion into the calcaneum, which is a relatively hypovascular area as shown by angiography studies of Lagergren and Lindholm^{9,10}. Age related changes result in stiffness and loss of elasticity predisposing to rupture. The practice of treating retrocalcaneal bursitis and tendoachillis tendinitis with local steroid injection is quite widespread. Instead of injecting the drug in the bursa or around the tendon in mesotendon, the injection given directly in the substance of tendon weakens collagen fibers and predisposes to rupture. Many authors claim that fresh rupture of the tendon can be managed conservatively, and have similar results with conservative and operative treatment when range of motion, strength, power and function levels are evaluated.^{11,12} Achilles tendon reconstruction with peroneus brevis as we did in our case is beneficial in patients with chronic rupture. It leaves minimal or no objective plantar flexion weakness following the procedure, and has minimal re-rupture rates. Peroneus brevis also fulfills many of the essential criteria for tendon transfer as the tendon has an acceptable strength of 116.2 N/mm, cross sectional area of 19.5 cm² and an elastic modulus of 149.7 N/mm², compared to an ultimate tensile load of 1724 N, has similar line of pull and has adequate excursion, and is expendable.^{13,15} It was also

easily identified distally inserting into the tubercle of the base of the fifth metatarsal, so we didn't have to create a large incision. The reconstructed gastro-soleus-achilles tendon complex stretches with increased loading and range of movement exercises during rehabilitation. Also, the tendon we used is a dynamic and vascular structure, hence full strength is regained and that too earlier as compared to use of fascia. Peroneus brevis is having muscular part up to lateral malleolus and hence the muscle part will be facing towards suture line so even if skin necrosis occurs, there will be early granulation over the muscle and hence less chances of infection. This will allow early healing and less scarring^{2,3}. The tendon passing through the hole in the bone is better and securely anchored. Following surgery, the ankle was kept in 20° of equinus to prevent disruption of the reconstruction. Vascularity of the soft tissues is maximal at 20° of plantar flexion, and at 40° of plantar flexion the blood supply of the skin is reduced by 49%. Therefore, the tightness of the repair may influence wound healing.¹⁶ To summarize, The management of acute and neglected subcutaneous tears of the Achilles tendon by peroneus tendon transfer is safe but technically demanding. It affords good recovery, even in patients with a neglected rupture of 6 weeks to 9 months duration, though Patients with a neglected rupture are at a slightly greater risk of postoperative complications. It provides a living, dynamic and vascular reinforcing structure in chronic and neglected rupture of tendo-achillis with minimum complications.

REFERENCES

1. Frederick M. Azar, Traumatic disorders. Campbell's operative orthopaedics, 12th edition:48
2. Nicola Maffulli, Umile Giuseppe Longo, Nikolaos Gouglias and Vincenzo Denaro. Ipsilateral free semitendinosus tendon graft transfer for reconstruction of chronic tears of the Achilles tendon. BMC Musculoskeletal Disorders 2008, 9:100
3. Michael R Carmont and Nicola Maffulli. Less invasive Achilles tendon reconstruction BMC Musculoskeletal Disorders 2007, 8:100
4. Peroneus brevis tendon transfer in neglected tears of the Achilles tendon. Pintore E, Barra V, Pintore R, Maffulli N.
5. ZS Kundu, SS Sangwan, R Mittal, S Jain, RC Siwach. Neglected tendo-achillis rupture -results of peroneus brevis tendon transfer. Indian Journal of Orthopaedics, VOL. 37:3, 2003
6. Ballas MT, Tytko J, Monnarino F, Commonly missed orthopaedics problems. Am Fam Physician 1998; 57: 267.
7. Maffulli N. The clinical diagnosis of subcutaneous tear of the Achilles tendon. A prospective study in 174 patients. Am J Sports Med 1998; 26: 266.
8. Kvist M. Achilles tendon injuries in athletes. Sports Med 1994; 18: 173.
9. Arner O, Lindholm A. Subcutaneous rupture of the Achilles tendon. Acta Chir Scand 1959; 239(Suppl): 1.
10. Lawerence GH, Cave EF, O'Connor H. Injury to the Achilles tendon. Am J Surg 1955; 89: 795.
11. Lea RB, Smith L. Non surgical treatment of tendoachillis rupture. J Bone Joint Surg [Am] 1972; 54-A: 398.
12. Nistor L. Surgical and non surgical treatment of achillis tendon rupture. J Bone Joint Surg [Am] 1981; 63-A: 394.
13. Attarian DE, McCrackin HJ, Devito DP, McElhaney JH, Garrett WE Jr: A biomechanical study of human lateral ankle ligaments and autogenous reconstructive grafts. Am J Sports Med 1985, 13(6):377-81.
14. Bohnsack M, Surie B, Kirsch IL, Wulker N: Biomechanical properties of commonly used autogenous transplants in the treatment of chronic lateral ankle instability. Foot Ankle Int 2002, 23(7):661-4.
15. Datta B, Turner A, Neil M, Maffulli N, Walsh WR: Mechanical properties of human flexor hallucis longus, peroneus brevis and tendo Achilles tendons. Presented at ESSKA Congress, Innsbruck; 2006.
16. Poynton AR, O'Rourke K: An analysis of skin perfusion over the Achilles tendon in varying degrees of plantar flexion. FootAnkle Int 2001, 22(7):572-4.

Source of Support: None Declared

Conflict of Interest: None Declared