

The effect of vitamin c on fasting blood glucose level and lipid profile in type-2 diabetes mellitus patients

V R Kathore^{1*}, D G Bansode²

¹Assistant Professor, ²Professor and HOD, Department of Physiology, Dr Ulhas Patil Medical College and Hospital, Jalgaon, Maharashtra, INDIA.

Email: vinodkathore@rediffmail.com, drssudeepashu@rediffmail.com

Abstract

Introduction: Diabetes Mellitus (DM) is third commonest disease in the world and one of the leading cause of death. It is associated with several mechanisms, one of which is oxidative stress. Vitamins C causes detoxification of free radicals directly. **Aim:** We had studied the effect of vitamin C on fasting blood glucose and plasma lipid levels in individuals with type 2 diabetes mellitus as this vitamin is known for its helpful effects on plasma lipids and blood sugar level. **Material and Method:** Fifty type 2 DM patients of the age group 40 to 80 years of both sexes were selected. Each patient received vitamin per day for twelve weeks. During the study period the treatment and diet was not changed. Fasting blood glucose and lipid profile were determined in baseline and after twelve weeks with receiving supplement. **Result:** The mean fasting blood glucose, low density lipoprotein cholesterol, total cholesterol, serum triglyceride and serum high density lipoprotein values in type 2 DM patients before and after supplementation of Vitamin C were measured. When these values were compared, using 'Paired t test', it showed significant ($P<0.05$) reduction in glucose and lipid profile (TC, TG, LDL, VLDL) in concordance with a significant elevation in HDL ($P<0.05$). **Conclusion:** Supplementation with vitamin C causes an improvement in blood glucose and lipid level in patients with Type 2 Diabetes.

Keywords: Lipid, Oxidative Stress, Type 2 Diabetes Mellitus, Vitamins C.

*Address for Correspondence:

Dr. V. R. Kathore, Assistant Professor, Department of Physiology, Dr Ulhas Patil Medical College and Hospital, Jalgaon, Maharashtra, INDIA.

Email: vinodkathore@rediffmail.com

Received Date: 17/08/2015 Revised Date: 14/09/2015 Accepted Date: 07/10/2015

Access this article online

Quick Response Code:

Website:
www.statperson.com

DOI: 12 October
2015

that reactive oxygen species (ROS) might play an important role in initiation, progression and complications of diabetes mellitus.² The cluster of lipid abnormalities associated with type-2 diabetes is defined by increase in triglycerides (TG) and small, dense low-density lipoproteins (LDL) concentrations and decrease in high-density lipoprotein (HDL) cholesterol.³ Lipid profile which is altered in diabetes state is one of the significant factors in development of cardiovascular diseases.⁴ Also oxidative modification of LDL is an important step in the development of atherosclerosis. Reactive oxygen species (ROS) can stimulate oxidation of low density lipoproteins (LDL), and oxidized low density lipoprotein, which is not recognized by the LDL receptors, can be taken by scavenger receptors in macrophages leading to foam cell formation and atherosclerotic plaques.⁵ Hyperglycemia can directly cause increased reactive oxygen species (ROS) generation. Glucose can undergo autoxidation and generate free radicals. Reactive oxygen species can be eliminated by a number of enzymatic and nonenzymatic antioxidant mechanisms.⁶ Nonenzymatic antioxidants include vitamin A, C and E; glutathione; α -lipoic acid;

INTRODUCTION

Diabetes mellitus is a heterogeneous group of metabolic disease that is characterized by chronic hyperglycemia and instability in carbohydrate, lipid and protein metabolism resulting from defects in insulin secretion and/or insulin action.¹ Systemically, these perturbations are accompanied with changes in a variety of biochemical processes and are exacerbated by overweight and obesity, altered lipid profile, smoking and/or genetic profile. In these composite risk factors, gathering evidence suggests

carotenoids; trace elements like copper, zinc and selenium; and co-factors like folic acid, uric acid, albumin and vitamins B1, B2, B6 and B12. Alterations in the antioxidant defense system in diabetes have recently been reviewed.⁷ High doses of vitamins C have been shown to decrease blood glucose, plasma cholesterol and triglyceride in T2DM patients.⁸ Vitamin C is structurally similar to glucose and can replace it in many chemical reactions, and thus is effective in prevention of non-enzymatic glycosylation of proteins. Vitamin C has a hypocholesterolemic effect. By preventing oxidation of low density lipoprotein cholesterol, it decreases LDL cholesterol as well as total cholesterol. It also raises HDL cholesterol levels.⁹ With the above background the present study aims at evaluating the effect of Vitamin C on fasting blood sugar and lipid profile parameters on type 2 diabetes mellitus patients.

MATERIAL AND METHODS

This is Open Label Randomized Prospective Clinical Trial also called 'Before and after' study carried out in the tertiary care centre. The study subjects were selected from diabetic outpatient department. Fifty known type 2 diabetes mellitus patients between the age group 40 to 80 years of both sexes on oral hypoglycemic drugs, with mean duration of disease 1 to 8 years and having blood glucose level less than 250 mg/dl were selected (n=50). Type 2 DM patients having blood glucose levels higher than 250 mg/dl, were excluded. Patients with rapidly progressive retinopathy, neuropathy, nephropathy, hypertension, hepatic and renal failure and patients taking insulin were excluded.

RESULTS

In this study, fasting blood glucose and plasma lipid levels values in type 2 DM before and after supplementation of Vitamin-C (Tablet Limcee) 500 mg bd for 12 weeks were estimated and compared. For this parameter, the mean value and standard deviation (SD) were calculated in study group. 'Paired t test' was applied to test whether the differences in means were statistically significant or not. P-value less than 0.05 ($P < 0.05$) was considered to be statistically significant. P-value of less than 0.001 ($P < 0.001$) was considered to be statistically highly significant. The results of the present study are as follows.

1. The mean duration of Type 2 Diabetes Mellitus in the study subjects was 4.17 ± 1.74 years (Table-A).
2. The mean values for the age, body weight, height and body mass index in the study group were 54.03 ± 7.22 years, 69.31 ± 7.71 kg, 161.08 ± 8.32 cm and 26.65 ± 2.32 kg/m² (Table-A).

Table 1: Table showing the demographic data of the study group

Sr. No.	Parameter	Subjects
1.	Age(years) (Mean \pm SD)	54.03 ± 7.22
2.	Male : Female ratio	1 : 1.24
3.	Weight(kilograms) (Mean \pm SD)	69.31 ± 7.71
4.	Height(centimetres) (Mean \pm SD)	161.08 ± 8.32
5.	Body Mass Index (kg/m ²) (Mean \pm SD)	26.65 ± 2.32
6.	Mean Duration Of Disease (years) (Mean \pm SD)	4.17 ± 1.74

Table 2: Table showing Fasting blood glucose level (mg/dl) before and after supplementation of Vitamin-C

Study Subjects	Fasting BSL (Mean \pm SD)	P Value
Pre Vitamin-C Supplementation.	146.9 ± 36.16	
Post Vitamin-C Supplementation	138.1 ± 34.28	$P < 0.05^*$

$P < 0.05^*$:- Statistically significant.

Table 3: Table showing Serum Cholesterol Levels (mg/dl) before and after Supplementation with Vitamin C

Test	Mean (Mean \pm SD)	P -Value
SCH- Pre	217.32 ± 29.41	$P < 0.001^{**}$
SCH- Post	158.53 ± 25.47	

$P < 0.001^{**}$ – Statistically highly significant

SCH- Pre: Serum cholesterol before supplementation with vitamin C.

SCH-Post: Serum cholesterol after supplementation with vitamin C.

Table 4: Table showing serum triglyceride levels (mg/dl) before and after supplementation with vitamin C

Test	Mean (Mean \pm SD)	P -Value
TG- Pre	234.66 ± 55.41	$P < 0.001^{**}$
TG- Post	163.17 ± 34.32	

$P < 0.001^{**}$ – Statistically highly significant

TG-Pre: Triglycerides before supplementation with vitamin C.

TG-Post: Triglycerides after supplementation with vitamin C.

Table 5: Table showing serum high density lipoprotein levels (mg/dl) before and after supplementation with vitamin C

Test	Mean (Mean \pm SD)	P -Value
HDL- Pre	37.25 ± 4.3	$P < 0.05^*$
HDL- Post	42.19 ± 3.6	

$P < 0.05^*$ – Statistically significant

HDL-Pre: High density lipoprotein before supplementation with vitamin C.

HDL-Post: High density lipoprotein after supplementation with vitamin C.

Table 6: Table showing serum low density lipoprotein levels (mg/dl) before and after supplementation with vitamin C

Test	Mean (Mean \pm SD)	P -Value
LDL- Pre	133.14 \pm 33.65	
LDL- Post	83.71 \pm 13.54	P < 0.001**

P < 0.001** – Statistically highly significant

LDL-Pre: Low density lipoprotein before supplementation with vitamin C.

LDL-Post: Low density lipoprotein after supplementation with vitamin C.

Table 7: Table showing serum very low density lipoprotein levels (mg/dl) before and after supplementation with vitamin C

Test	Mean (Mean \pm SD)	P -Value
VLDL- Pre	46.932 \pm 11.02	P < 0.05*
VLDL- Post	32.634 \pm 6.86	SIGNIFICANT

VLDL-Pre: Very low density lipoprotein before supplementation with vitamin C.

VLDL-Post: Very low density lipoprotein after supplementation with vitamin C.

DISCUSSION

Type 2 diabetes is the commonest form of diabetes and associated with multiple metabolic derangements that result in the excessive production of reactive oxygen species (ROS) and oxidative stress.¹² Oxidative stress and resultant tissue damage are hallmarks of chronic disease and cell death. There is increasing evidence that, in certain pathological states, the increase production and / or ineffective scavenging of such reactive oxygen species may play a crucial role in determining tissue injury. Due to these events, the balance normally present in cells between radical formation and protection against them is disturbed. This leads to oxidative damage of cell components such as proteins, lipids and nucleic acids. There is a correlation between impaired glycemic control and enhanced lipid peroxidation. Studies have demonstrated that antioxidant vitamins and supplements can help in lowering the markers indicative of oxidative stress and lipid peroxidation in diabetic subjects and animals. Vitamin C is a hydrophilic molecule that can scavenge radicals, among them the hydroxyl radical. Vitamin C is the strongest physiological antioxidant acting in the organism's aqueous environment.¹³ The present study was undertaken to study the antioxidant effect of vitamin C on fasting blood sugar and lipid profile parameters before and after supplementation in type-2 diabetes mellitus patients. The results obtained in the present study showed that with vitamin C there was significant (P<0.05) reduction in glucose and lipid profile (TC, TG, LDL, VLDL) in concordance with a significant elevation in HDL.(P<0.05) Thus in the present study we observed that supplementation of 1000 mg of vitamin C

daily for 12 weeks in type-2 diabetes mellitus patients causes a significant fall in their fasting blood sugar levels, serum cholesterol levels, low density lipoprotein-cholesterol, VLDL levels and serum triglyceride levels and elevation of high density lipoprotein-cholesterol levels. Vitamin C is important antioxidant in humans, able of scavenging oxygen-derived free radicals,¹⁴ improved hyperlipidemia and decreased blood pressure.¹⁴ Several studies showed increased oxidative stress, and decreased basal vitamin C levels in diabetic patients.¹⁵ Decreased serum cholesterol levels after administration of vitamin C is related to decreased blood sugar levels rather than vitamin C directly acting on serum cholesterol. However more light on the effect of vitamin C on serum cholesterol and other lipid parameters can only be focused when Vitamin C administration will be studied in dyslipidemia or hypercholesterolemia. The present study demonstrated that in people with diabetes, increased production of triglycerides and LDL cholesterol occurred in association with reduced levels of HDL cholesterol. This was similar with Budin *et al* (2009), who studied that both lipid accumulations particularly triglycerides and reduction in antioxidant activity contributed to the development of oxidative stress in diabetes.¹⁶ Hyperglycemia was found to promote lipid peroxidation of low density lipoprotein (LDL) by a superoxide-dependent pathway resulting in the generation of free radicals. It may be that hyperglycemia could be an initiation step for induction of oxidative stress.⁶ Vitamins C and vitamin E have an important function in glucose metabolism (Martini *et al.*, 2010). Reduced levels of antioxidants such as vitamin C occurred in people with diabetes.¹⁷ The findings of this study can be related with the other studies. Paolisso *et al.* (2007) also reported beneficial effects of oral vitamin C (1000 mg/day for 4 months) on glucose, lipid metabolism, and free radicals in T2DM.¹⁸ In this work the efficiency of vitamin C against lipid peroxidation was apparent through the reduction of the susceptibility of erythrocytes to hydrogen peroxide-induced lipid peroxidation and a potent lipophilic agent that forms an important scavenger component of the cell membrane.¹⁹ It may protect the safety of the membrane by reducing the production of lipid peroxides.²⁰ Vitamin C is required for regeneration of α -tocopherol (vitamin E) and may thus prevent LDL oxidation, and transport of α -tocopherol in HDL may enhance and preserve these protective antioxidant effects of HDL. It has been shown decreased levels of lipid profile, lipid peroxidation and free radical production by vitamin C supplementation.²¹ V Peponis *et al* (2002) given vitamin C (1000 mg/day) supplementation for 10 days to 50 patients with non-insulin dependent diabetes mellitus. Nitrite levels in tears were measured by photometric determination before and

after vitamin supplementation. Nitrite levels were found to be significantly reduced after 10 days of vitamin C supplementation. Vitamin C probably has an important role in reducing the oxidative damage produced by nitric oxide.²² Eriksson J *et al* (1995) observed that supplementation of 2 gm of vitamin C for 12 weeks in type-2 diabetes mellitus patients show an improvement in fasting blood sugar, cholesterol and triglycerides. The results suggested in his study that high-dose vitamin C supplementation may have a beneficial effect in type-2 diabetes subjects on glycemic control and blood lipids.²³ The hypocholesteroleamic effects of vitamin C could be due to its direct effect as an antioxidant, in addition to its cholesterol lowering potential due to the effect on cholesterol metabolism directly in the liver. In support of this hypothesis the serum cholesterol decreased and in vitro activities of hydroxyl methyl-glutaryl-CoA reductase and sterol-o acyl transferse, the key enzyme in cholesterol metabolism was inhibited by high dose of vitamin C.²⁴ Also vitamin C may inhibit the absorption of cholesterol and bile acid in the intestine and increase the excretion with wastes. This leads to a reduction in cholesterol levels by the liver.²⁵ As well as it may be due to an inhibition of TG synthesis by the increasing lipoprotein lipase activity, which is an insulin-dependent enzyme, since the lipoprotein lipase synthesis is defective in diabetic patient.²⁶ Also vitamin C contributes to the decreased synthesis of TG by liver through inhibiting fatty acid production.²⁷ Actually in diabetes, the oxidative stress is increased because of the deficiency in the antioxidant defense, so the intake of antioxidant such as vitamin C (powerful natural antioxidant) may reduce the oxidative stress associated with diabetes and hence help to restore the antioxidant defense system by reducing free radical. Vitamin C supplementation was able to normalize endothelial function and decrease oxidative stress to normal levels in type 1 and 2 diabetic patients.^{28,29} Marc P. McRae (2006) studied the correlation between serum cholesterol and plasma vitamin C concentration. He found an inverse correlation ($r = -0.500$, $p <0.005$) between the two.³⁰ The findings of his study are consistent with the present study. Supplementation with high dose of vitamin C increases the plasma vitamin C concentration leading to subsequent decrease in serum cholesterol. The above studies clearly showed that supplementation with high doses of vitamin C for a particular period will definitely improve the glycemic control and lipid profile in Type-2 diabetes mellitus patients. In type-2 diabetes mellitus patients lipid abnormalities significantly contribute to complications of diabetes. Diabetes mellitus is characterized by hyperglycaemia together with biochemical alterations of glucose and lipid peroxidation. Some complications of

diabetes mellitus are associated with increased activity of free radical-induced lipid peroxidation and accumulation of lipid peroxidation products.³¹ The major carrier of cholesterol and triglycerides in plasma is low-density lipoprotein (LDL). LDL can infiltrate the intimal layer of arteries and undergo oxidation locally, although the mechanism of oxidation is not fully understood. Oxidized LDL activates adhesion factor expression in endothelial cells. This induces monocytes to adhere to endothelium, where they are activated to differentiate into macrophages, in part via cytokines also induced by oxidized LDL. Macrophages accumulate oxidized LDL and remain in the vascular wall, developing into foam cells and subsequently into fatty streaks, the telltale lesion of atherosclerosis. If vitamin C reduces oxidants, LDL oxidation should be decreased.²¹ The antioxidant balance is disturbed in diabetes due to hyperglycemia. When glucose is catabolised it converts into sorbitol by polyol pathway which leads to consumption of NADPH (a coenzyme in the production of reduced glutathione). Due to this depletion of NADPH reduced glutathione which itself is an antioxidant will not be available for breakdown of hydrogen peroxide to water and oxygen leading to increased oxidative stress. This reduced form of glutathione itself gets oxidised and converts oxidised vitamin C into reduced vitamin C which acts as an antioxidant and scavange the free radicals. Nonenzymatic glycation of lipids and proteins also contributes to increased oxidative stress in diabetes. Oxidative stress induced by reactive oxygen species (ROS), which is generated by hyperglycaemia, is one of the major foci of recent research related to diabetes mellitus.³² The impact of supplementation of vitamin C on the lipid profile merits attention. It is well known that hyperlipidemia is a secondary consequence of hyperglycemia and diabetics are at great risk of developing coronary heart disease (CHD).³³ In light of this fact it is encouraging that vitamin C can act as a hypolipidemic agent reducing the risk of complications in diabetics. Thus vitamin C may be used as a supportive therapy for diabetics. Apart from using vitamin C many other antioxidants including spices and natural products were also used in other studies to observe their effects on blood glucose and lipid profile in type-2 diabetes mellitus patients. Antioxidant potency of vitamins is limited because these antioxidants work as scavengers for existing reactive species and this approach represents a symptomatic approach to oxidative stress associated clinical problems. If the antioxidants block the formation of free radicals due to hyperglycemia than it will provide a more targeted approach for use of antioxidants in the treatment plan of diabetes.

SUMMARY AND CONCLUSION

The present study was carried out to see the effect of antioxidant vitamin C on fasting blood glucose and lipid profile in Type-2 diabetes mellitus patients. This study provides evidence that hyperglycemia plays a significant role in hyperlipidemia. Supplementation of vitamins C to Type-2DM patients might improve endogenous antioxidant capacity due to reducing blood glucose and lipid metabolites, and they may play a role in preventing complications in Type 2 diabetes. Derangements of lipid profile and blood sugar in diabetes patients leads to development of various types of complications. Hyperglycemia is the main cause of generation of free radicals leading to increased oxidative stress and complications in diabetes patients. The lipid profile parameter which is most affected by oxidative stress is the LDL- cholesterol level. The LDL gets oxidized by free radicals and oxidized LDL is not recognized by LDL receptors. α - tocopherol (vitamin E) is a lipid soluble antioxidant which protects LDL particles from oxidative attack. Vitamin C is required for regeneration of α -tocopherol and may thus prevent LDL oxidation. In conclusion, supplementation with 1000 mg/day of vitamin C in addition to the normal diet and treatment schedule may help in improving blood glucose and lipid profile in patients with type-2 diabetes.

ACKNOWLEDGMENTS

During the project we got help from all the teaching staff of Department of Physiology, Dr Ulhas Patil Medical College and Hospital Jalgaon. So I am thankful to all of them. We sincerely thank all the patients for their participation.

REFERENCES

1. Abdel-Rahman, Z. (2011). The effects of antioxidants supplementation on haemostatic parameters and lipid profiles in diabetic rats. *Journal of American Science*, 7 (3), 835-840.
2. Roja Rahimi, Shekoufeh N, Bagher L, Mohammad Abdollahi. A review on the role of antioxidants in the management of diabetes and its complication, *Biomedicine and Pharmacotherapy*, 2005; 59:pp365-73.
3. Ronald M Kraus, Patty W Siri. Dyslipidemia in type 2 diabetes. *Med Clin N Am* 2004; 88: 897-909.
4. Batteridge DJ. Diabetic dyslipidemia. *Am J Med* (suppl. 6A) 1994; 96: 255-315.
5. Felmeden DC, Spencer CG, Blann AD, Beevers DG, Lip GY. Low-density lipoprotein subfraction and cardiovascular risk in hypertension: Relationship to endothelial dysfunction and effects of treatment. *Hypertension* 2003; 41: 528-33.
6. Jakus V. the role of oxidative stress and antioxidant sys. In diabetic vascular diseases. *Bratisl Lek Listy* 2000; 101(10):541-51.
7. Jeanette Schultz Johansen, Alex K Harris, David J Rychly, Advije Ergul. Oxidative stress and the use of antioxidants in diabetes: Linking basic science to clinical practice. *Cardiovascular Diabetology* 2005; 4 (5): 1-11.
8. Chen, H., Karne, R. J., Hall, G., Campia, U., (2006). High-dose oral vitamin C partially replenishes vitamin C levels in patients with type 2 diabetes and low vitamin C levels but does not improve endothelial dysfunction or insulin resistance. *Am J Physiol Heart Circ Physiol*, 290, H137-145.
9. Ness AR, Khaw KT, Bingham S, Day NE. Vitamin C status and serum lipids. *Eur J Clin Nutr* 1996 Nov; 50(11): 724-9.
10. Bridges, Fisher AB, Scott TC. Circadian rhythm of white blood cell aggregation and free radical status in healthy volunteers. *Free Rad Res Commun*, 1992; 16:pp89-97.
11. Trinder P. Determination of blood glucose using an oxidase - peroxidase system with a noncarcinogenic chromogen. *Journal of clinical pathology* 1969; 22:158-61.
12. Kumawat M, Singh I, Singh N, Singh V. Lipid peroxidation and lipid profile in type 2 diabetes mellitus : 2012: ISSN2046-1690.
13. Roja Rahimi, Shekoufeh Nikfar, Bagher Larijani, Mohammad Abdollahi. A review on the role of antioxidants in the management of diabetes and its complications. *Biomedicine and Pharmacotherapy* 2005; 59: 365-73.
14. Caballero, A. E. (2004). Endothelial dysfunction, inflammation, and insulin resistance: a focus on subjects at risk for type 2 diabetes. *Curr DiabRep*, 4, 237-246.
15. American Diabetes Association. (2009). Standards of medical care in diabetes (Position Statement). *Diabetes Care*, 32 (Suppl. 1), S13-S61.
16. Budin Balkis, S., Othman, F., Louis S. R., J. (2009). Effect of alpha lipoic acid on oxidative stress and vascular wall of diabetic rats. *Rom J. Morphol. Embryol*, 50 (1), 23-30.
17. Ceriello, A., Bortolotti, N., and Crescentini, A. (1998). Antioxidant defences are reduced during the oral glucose tolerance test in normal and non-insulin-dependent diabetic subjects. *Eur. J. Clin Invest*, 28, 329.
18. Paolisso, G., Balbi, V., Volpe C. (2007). Metabolic benefits deriving from chronic vitamin C supplementation in aged non-insulin dependent diabetics. *J Am Coll Nutr*, 14, 387-392.
19. Abed, Shalata and Peter, M. Neumann. (2001). Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. *J. Experimental Botany*, 52 (364), 2207-2211.
20. Meagher, E. A., Barry, O. P., Lawson, J. A., (2001). Effects of vitamin E on lipid peroxidation in healthy persons. *JAMA*, 285, 1178-1182.
21. Upritchard, J. E., Sutherl, W. H. F., and Mann, J. I. (2008). Effect of supplementation, vitamin E and vitamin C on LDL oxidation and products of inflammatory activity in type 2 diabetes. *Diabetes Care*, 23, 733-738.
22. V Peponis, M Papathanasiou, A Kapranou. Protective role of oral antioxidant supplementation in ocular surface of diabetic patients. *Br J Ophthalmol* 2002; 86:1369-73.

23. Eriksson J, Kahvakka A. Magnesium and ascorbic acid supplementation in diabetes mellitus. *Ann Nutr Metab* 1995; 39: 217-23.
24. Young, F.; Nielson, S. E. and Haralds bottir, J. (1999). The effect of fruit juice intake on urinary quercetin excretion and biomarkers of antioxidant status. *Am. J. Clin. Nutri.*, 69: 87-94.
25. Bhat, b. G.; Sambainh, K. and Cheidrasekhava, N. (1985). The effect of the glabridin on endogenous constituents of LDL during its oxidation. *J. Atherosclerosis.*, 137: 49-61.
26. Harmier, D. (1997). Lipoprotein metabolism and fasting poultry. *J. Nut.*, 127:8085.
27. Criqui, M. H. and Golomb, B. A. (1998). Epidemiologic aspects of lipid abnormalities. *Am. J. med.*, 105(1A): 482-572.
28. AL-Shamsi, M.; Amin, A. and Adegate, E. (2006). Effect of vitamin C on liver and kidney function in normal and diabetic rats. *Ann N. Y. Acad. Sci.*, 1084:371-390.
29. Ceriollo, A.; Piconi, L.; Esposito, K. and Giugliano, D. (2007) Telmisartan shows an equivalent effect of vitamin C in further improving endothelial dysfunction after glycemia normalization in type I diabetes. *diabetes care.*, 30(7): 1694- 1698.
30. Marc P McRae. The efficacy of vitamin C supplementation on reducing total serum cholesterol in human subjects: a review and analysis of 51 experimental trials. *Journal of Chiropractic medicine* 2006; 5(1): 2-12.
31. Lorenzo A Gordon, Errol y Morrison, Donovan A McGrowder. Effect of exercise therapy on lipid profile and oxidative stress indicators in patients with type 2 diabetes. *BMC Complementary and Alternative Medicine* 2008; 8: 21.
32. Frei B, England L, Ames BN. Ascorbate is an outstanding antioxidant in human blood plasma. *Proc Natl Acad Sci USA*, 1989; 86(16):6377-81.
33. Batteridge DJ. Diabetic dyslipidemia. *Am J Med (suppl. 6A)* 1994; 96: 255-315.

Source of Support: None Declared

Conflict of Interest: None Declared