

CT perfusion study of brain: Normal and in its various diseases

Arunan Murali^{1*}, Bhasker Raj T², Venkata Sai P M³, Poornima Ravichandran⁴

^{1,2}Associate Professor, ³Professor and HOD, ⁴Technologist, Department of Radiology, Sri Ramachandra Medical College, Porur, Chennai – 600 116, Tamil Nadu, INDIA.

Email: dr.arunan@gmail.com

Abstract

Introduction: Perfusion is the process of delivering blood to a capillary bed of biological tissues. The word is derived from the French verb "perfuser" meaning "pour over or through". **Aims and Objectives:** To Study CT perfusion Study of Brain: Normal and In its Various Diseases. **Methodology:** This was Prospective study of 2 months (March 2014 - April 2014) duration at sriramachandra hospital, A tertiary care teaching hospital, Department of Radiology and Imaging Sciences. 10 patients of either sex presented themselves in Radiology department. Their reports and image data's were collected prospectively during the study period between March 2014 to April 2014. Parameters for CT perfusion brain were in cine mode, Parameters for CT perfusion Brain and neck regions shuttle mode. **Result:** The CT perfusion parameters of the first three patients with normal CT findings showed normal values. The CT perfusion in the patient with acute stroke showed significant decrease in Cerebral blood flow (CBF) in the affected hemisphere. Significant decrease in cerebral blood volume (CBV) was also seen. The CBV maps were less sensitive and TTP maps were less specific and also showed areas of collateral blood flow. **Conclusion:** In summary, perfusion CT is clearly a viable alternative to other modalities used to measure perfusion. This technique is fast and available in most standard helical CT scanners equipped with the appropriate software. Perfusion CT can be used to assess not only patients with acute stroke but also helpful in the diagnosis and subsequent treatment response in patients with a variety of tumors. Further investigations are necessary to determine the accuracy, reliability, and reproducibility of the quantitative results.

Keywords: CT perfusion parameters, Cerebral blood flow (CBF), Cerebral blood volume (CBV).

*Address for Correspondence:

Dr. Arunan Murali, Associate Professor, Department of Radiology, Sri Ramachandra Medical College, Porur, Chennai – 600 116, Tamil Nadu, INDIA.

Email: dr.arunan@gmail.com

Received Date: 23/04/2016 Revised Date: 19/05/2016 Accepted Date: 27/06/2016

Access this article online

Quick Response Code:

Website:
www.statperson.com

DOI: 01 July 2016

temperature, condition and capillary refill. In 1920, August Krogh was awarded the Nobel Prize in Physiology or Medicine for his discovering the mechanism of regulation of capillaries in skeletal muscle. Krogh was the first to describe the adaptation of blood perfusion in muscle and other organs according to demands through the opening and closing of arterioles and capillaries. Computed tomography (CT) is a technology that uses computer-processed x-rays to produce topographic images (virtual slices) of specific areas of the scanned object, allowing the user to see what is inside it without cutting it open. Digital geometry processing is used to generate a three-dimensional image of the inside of an object from a large series of two-dimensional radiographic images taken around a single axis of rotation. Medical imaging is the most common application of x-ray CT. Its cross-sectional images are used for diagnostic and therapeutic purposes in various medical disciplines. CT produces a volume of data that

INTRODUCTION

Perfusion is the process of delivering blood to a capillary bed of biological tissues. The word is derived from the French verb "perfuser" meaning "pour over or through". Tests verifying that adequate perfusion exists are a part of a patient's assessment process that is performed by medical or emergency personnel. The most common methods include evaluating body's skin color,

can be manipulated in order to demonstrate various bodily structures based on their ability to block the x-ray beam. Although, historically, the images generated were in the axial or transverse plane, perpendicular to the long axis of the body, modern scanners allow this volume of data to be reformatted in various planes or even as volumetric (3D) representations of structures. In the assessment of acute stroke syndrome, neuroimaging plays a critical role in determining patient care. NCCT remains the first-line imaging technique for differentiating hemorrhagic and ischemic stroke and identifying other etiologies for altered neurologic status, such as an intracranial mass.¹ In stroke, NCCT is used to exclude acute hemorrhage and large areas of clearly infarcted tissue and to select patients for thrombolysis²⁻⁴. The addition of cross-sectional CT angiography and perfusion imaging can further improve detection of infarct, can identify candidates who will have the best functional outcome after thrombolysis, and may further widen the time window for intravascular therapy.⁵⁻⁸. The role of CTP in the acute stroke setting continues to grow despite widespread use of DWI.⁹ CT has distinct advantages, including relative cost, availability, and ease of patient monitoring.¹⁰ The advent of multi-detector CT has also increased imaging speed, making dynamic and angiographic imaging possible. CTP and CTA can be performed rapidly and conveniently following NCCT.¹¹ On 16-section multi-detector scanners, the total additional scanning time for CTP/CTA is <2 minutes. The total additional acquisition time is approximately¹⁵ 15 minutes, and additional post-processing time is approximately 10 minutes.¹² CTP imaging can be performed while keeping the radiation dose as low as possible and producing useful perfusion maps. Care must be taken to optimize scanning parameters for CTP as per recent statements from the US Food and Drug Administration,¹³ the American College of Radiology, and American Society of Neuroradiology.¹⁴ With CTP, it is not only possible to accurately identify potentially salvageable ischemic tissue (penumbra) and separate this from irreversibly infarcted tissue (core), but recent work shows that CTP can be used to predict the benefit after thrombolysis.¹⁵ Studies have shown good agreement of CTP findings with DWI and MR perfusion.⁷ In addition, CBF can be quantified by using CTP. CTP packages are now available on virtually all commercial CT scanners. As the role of CTP grows in the diagnosis and treatment of acute stroke, it becomes ever more important for the radiologist to understand patterns and potential pitfalls in interpretation. We review a series of perfusion

patterns with illustrative cases of cerebral ischemia and mimickers. normal perfusion: CTP parameters that are commonly calculated by commercially available post processing software platforms include CBF, CBV, MTT, and TTP. CBF, CBV, and MTT are related by the central volume principle: $CBF = CBV/MTT$.¹⁷ these are commonly derived from CTP source data by using deconvolution analysis.¹⁸ CTP measures brain tissue blood perfusion. CBV is measured in units of milliliters of blood per 100 g of brain and is defined as the volume of flowing blood for a given volume of brain. MTT is measured in seconds and defined as the average amount of time it takes blood to transit through the given volume of brain. CBF is measured in units of milliliters of blood per 100 g of brain tissue per minute and is defined as the volume of flowing blood moving through a given volume of brain in a specific amount of time.¹⁸ in the setting of acute infarction, areas of irreversibly infarcted tissue show matched areas of decreased CBF and CBV with increased MTT (Fig 2). This pattern suggests neuronal death with irreversible loss of function or core infarct.²⁰ in several studies correlating CTP with DWI, severe decreases in CBV are particularly sensitive and specific for defining the extent of unsalvageable core.^{8,21}

MATERIAL AND METHODS

This was Prospective study of 2 months (March 2014 - April 2014) duration at sriramachandra hospital, A tertiary care teaching hospital, Department of Radiology and Imaging Sciences. 10 patients of either sex presented themselves in Radiology department. Their reports and image data's were collected prospectively during the study period between March 2014 to April 2014. A detailed history of various patients data includes patient demographic details, hospital ID, radiology accession number, and the study reports were collected and entered in a specially designed Proforma. The acquired study data of " CT Perfusion data" of each patients were then post processed by using a GE ADVANTAGE WORKSTATION (software version 4.4) and CTP values of Brain were collected by using a specially designed software called "FUNCTOOL. Full detailed reports with the history of all patients were collected and used for the study. All the patients' data within the study period were collected. Patients were selected irrespective of their age group, gender excluded from the study. Parameters for CT perfusion brain were in cine mode, Parameters for CT perfusion Brain and neck regions shuttle mode.

RESULT

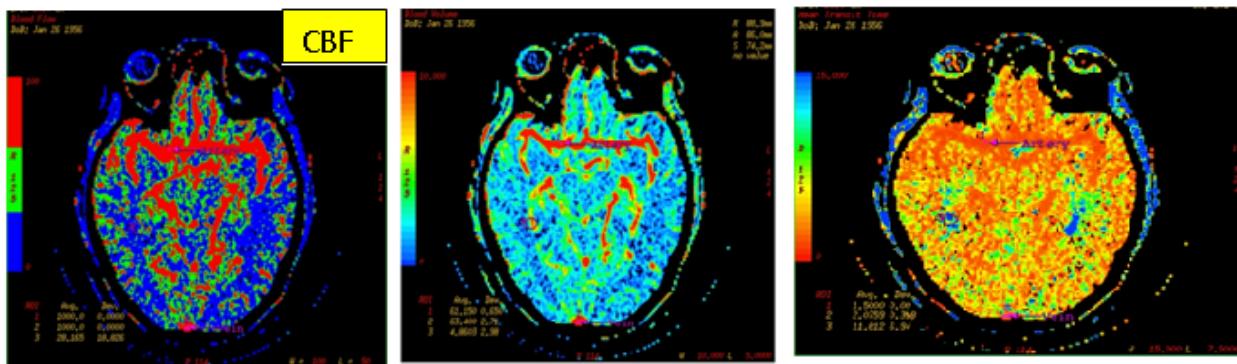


Figure 1: CT perfusion of normal brain

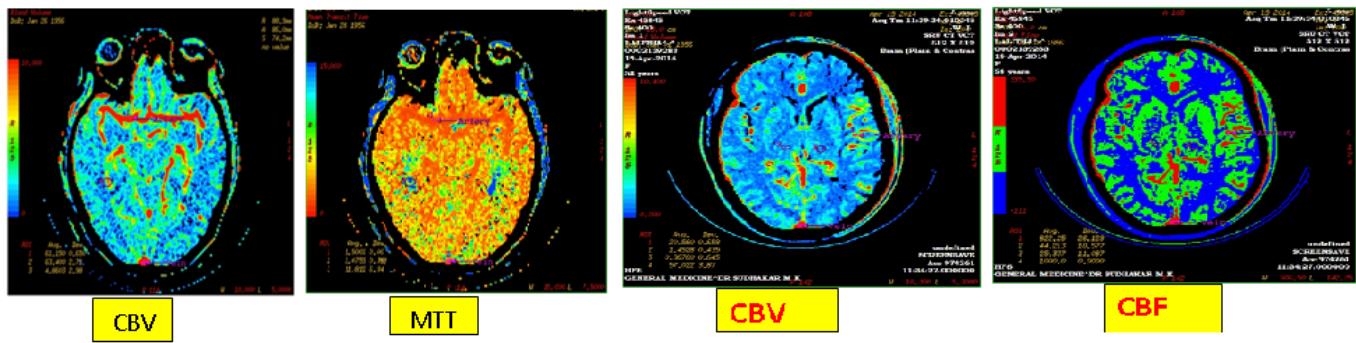


Figure 2: CT Perfusion of brain in acute stroke

Table 1: Distribution of the Normal and acute infarct with respect to CT perfusion of brain

Region	Blood Volume (BV)	Blood Flow (BF)	Mean Transit Time (MTT)	Surface Permeability (SP)
Normal Brain parenchyma	1.45	44.21	2.21	0.29
Brain (acute infarct)	0.987	25.3	2.39	1.89

From above figures CT perfusion of brain was performed in four patients. Three were performed on patients who presented with complaints of generalized headache. The fourth study was performed on a patient who presented with complaints of right sided weakness. The perfusion studies were performed after routine brain study was completed. The CT brain of the first three patients was normal. The CT brain of the fourth patient showed subacute infarct in the left thalamus. The CT perfusion was performed in the fourth patient with acute stroke to indicate tissues at risk and to measure a perfusion limit to predict infarction. The CT perfusion parameters of the first three patients with normal CT findings showed normal values. The CT perfusion in the patient with acute stroke showed significant decrease in Cerebral blood flow (CBF) in the affected hemisphere. Significant decrease in cerebral blood volume (CBV) was also seen. The CBV

maps were less sensitive and TTP maps were less specific and also showed areas of collateral blood flow.

DISCUSSION

The perfusion studies on the patient with acute stroke showed relative values of CBV and CBF which very well discriminated the areas of reversible and irreversible ischemia. The study provided substantial and important additional information to facilitate optimal treatment strategy on patient with acute stroke. In our study we found The CT perfusion in the patient with acute stroke showed significant decrease in Cerebral blood flow (CBF) in the affected hemisphere. Significant decrease in cerebral blood volume (CBV) was also seen. The CBV maps were less sensitive and TTP maps were less specific and also showed areas of collateral blood flow.

CONCLUSION

In summary, perfusion CT is clearly a viable alternative to other modalities used to measure perfusion. This technique is fast and available in most standard helical CT scanners equipped with the appropriate software. Perfusion CT can be used to assess not only patients with acute stroke but also helpful in the diagnosis and subsequent treatment response in patients with a variety of tumors. Further investigations are necessary to determine the accuracy, reliability, and reproducibility of the quantitative results.

REFERENCES

1. De Lucas EM, Sanchez E, Gutierrez A, et al. CT protocol for acute stroke: tips and tricks for general radiologists. *Radiographics* 2008;28:1673–87
2. Tissue plasminogen activator for acute ischemic stroke: The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. *N Engl J Med* 1995;333:1581–87
3. Dzialowski I, Hill MD, Coutts SB, et al. Extent of early ischemic changes on computed tomography (CT) before thrombolysis: prognostic value of the Alberta Stroke Program Early CT Score in ECASS II. *Stroke* 2006; 37:973–78. Epub 2006 Feb 23
4. Furlan A, Higashida R, Wechsler L, et al. Intra-arterial prourokinase for acute ischemic stroke: the PROACT II study—a randomized controlled trial. *Prolyse in Acute Cerebral Thromboembolism*. *JAMA* 1999;282:2003–11
5. Schramm P, Schellinger PD, Klotz E, et al. Comparison of perfusion computed tomography and computed tomography angiography source images with perfusion-weight edimaging and diffusion-weight edimaging in patients with acute stroke of less than 6 hours' duration. *Stroke* 2004;35:1652–58
6. Silvennoinen HM, Hamberg LM, Lindsberg PJ, et al. CT perfusion identifies increased salvage of tissue in patients receiving intravenous recombinant tissue plasminogen activator within 3 hours of stroke onset. *AJNR Am J Neuroradiol* 2008;29:1118–23
7. Wintermark M, Meuli R, Browaeys P, et al. Comparison of CT perfusion and angiography and MRI in selecting stroke patients for acute treatment. *Neurology* 2007;68:694–97
8. Hellier KD, Hampton JL, Guadagno JV, et al. Perfusion CT helps decision making for thrombolysis when there is no clear time of onset. *J NeurolNeurosurg Psychiatry* 2006;77:417–19
9. Parsons MW. Perfusion CT: is it clinically useful? *Int J Stroke* 2008;3:41–50
10. Rai AT, Carpenter JS, Peykanu JA, et al. The role of CT perfusion imaging in acute stroke diagnosis: a large single-center experience. *J Emerg Med* 2008;35:287–92
11. Srinivasan A, Goyal M, Al Azri F, et al. State-of-the-art imaging of acute stroke. *Radiographics* 2006;26 (suppl 1):S75–95
12. Srinivasan A, Goyal M, Lum C, et al. Processing and interpretation times of CT angiogram and CT perfusion in stroke. *Can J NeurolSci* 2005;32:483–86
13. Food and Drug Administration. Update on Safety Investigation of CT Brain Perfusion Scan. Available at: http://www.fda.gov/MedicalDevices/Safety/Alerts_andNotices/ucm185898.htm. Accessed December 8, 2009
14. The American Society of Neuroradiology and American College of Radiology Statement on CT Protocols and Radiation Dose. Available at: www.asnr.org/asnr_acr_ct_dose.shtml. Accessed January 8, 2010
15. Knoepfli AS, Sekoranja L, Bonvin C, et al. Evaluation of perfusion CT and TIBI grade in acute stroke for predicting thrombolysis benefit and clinical outcome. *J Neuroradiol* 2009;36:131–37
16. Schaefer PW, Barak ER, Kamalian S, et al. Quantitative assessment of core/ penumbra mismatch in acute stroke: CT and MR perfusion imaging are strongly correlated when sufficient brain volume is imaged. *Stroke* 2008;39:2986–92
17. Meier P, Zierler KL. On the theory of the indicator-dilution method for measurement of blood flow and volume. *J ApplPhysiol* 1954;6:731–44
18. Konstas AA, Goldmakher GV, Lee TY, et al. Theoretic basis and technical implementations of CT perfusion in acute ischemic stroke. Part 1.Theoretic basis. *AJNR Am J Neuroradiol* 2009;30:662–68
19. Rostrup E, Knudsen GM, Law I, et al. The relationship between cerebral blood flow and volume in humans. *Neuroimage* 2005;24:1–11
20. Heiss WD. Flow thresholds of functional and morphological damage of brain tissue. *Stroke* 1983;14:329–31
21. Wintermark M, Flanders AE, Velthuis B, et al. Perfusion-CT assessment of infarct core and penumbra: receiver operating characteristic curve analysis in 130 patients suspected of acute hemispheric stroke. *Stroke* 2006;37:979 –85

Source of Support: None Declared

Conflict of Interest: None Declared