

# Indications for Penetrating Keratoplasty in Western India

Aruna Kumari<sup>1</sup>, Roopam Gupta<sup>2\*</sup>

{<sup>1</sup>Assistant Professor, Department of Ophthalmology} {<sup>2</sup>Associate Professor, Department of Anatomy}

C. U. Shah Medical College and Hospital, Dudhrej Road, Surendranagar - 363001 Gujarat, INDIA.

\*Corresponding Addresses:

[arunagupta.eye@gmail.com](mailto:arunagupta.eye@gmail.com), [maildr Gupta@gmail.com](mailto:maildr Gupta@gmail.com)

## Research Article

**Abstract: Aim:** To carry out a retrospective study to analyze the indications for penetrating keratoplasty (PK) in Western India.

**Materials and Methods:** A retrospective investigational analysis of 311 cases performed between June 2006 and June 2008 was conducted to study the indications for penetrating keratoplasty.

**Results:** It was recorded that 'Corneal Opacity' was the most common indication for PK (39.53%) followed by Acute infective Keratitis (AIK) cases (23.47%) and Pseudophakic bullous keratopathy (PBK) cases (17.04%). In 'Regrafts' PK was done in 7.71% and Descemetocoele was the indication in 4.18%. Aphakic bullous keratopathy (ABK - 3%) and Keratoconus (3.85%) were uncommon indications for PK in the present study.

**Conclusion:** 'Corneal Opacity' was the most common indication for PK followed by AIK cases in western India. Thus it can be concluded from our study that still today high risk cases for penetrating keratoplasty are performed more in the India than in the developed countries and, so effective preventive programmes should be implemented to reduce the incidence of corneal blindness

**Keywords:** Penetrating keratoplasty, indications, developing world.

## Introduction

Corneal diseases are a significant cause of visual impairment worldwide. As per the survey conducted by MOH&FW in 2006-2007, 1% of the total blindness (vision 6/60 or < 6/60) constituting 1.22 lakhs of the Indian population are bilaterally corneal blind.<sup>[1]</sup> Penetrating keratoplasty (PK) is one of the main surgical treatments for corneal blindness. Many studies have been done on the indications for PK in India<sup>[2,3,4,5,6]</sup> and the developed world.<sup>[7,8,9,10,11,12,13,14,15,16,17]</sup> As the prognosis depends on the pathology responsible for causing the corneal blindness,<sup>[18,19,20]</sup> the purpose of the present study is to evaluate the indications for PK at our institution that would enable comparison with the indications for PK reported from other parts of India and the developed world.

## Material and Methods

A retrospective investigational analysis of 311 cases undergoing penetrating keratoplasty between June 2006 and June 2008 was conducted to analyze the indications for penetrating keratoplasty. The Institutional Ethical Committee had cleared the project. All the patients had

given their informed consent. Pre operative examination of recipient included details of patient, chief complaints, presence of any predisposing factors such as ocular surface disorders, trauma, contact lens use, systemic illness and previous history of graft infection, systemic history and past history of ocular surgery. Clinical examination included uncorrected visual acuity, best corrected visual acuity, cycloplegic refraction (not done in infective keratitis cases), slit lamp biomicroscopy to determine any ocular pathology, applanation tonometry (not done in infective keratitis cases), dilated fundus examination to rule out posterior segment pathology and sac syringing. Investigations included tear film status, gonioscopy, routine blood investigations, fasting blood sugar and fasting urine sugar, serology to screen for infectious diseases such as AIDS (HIV), Hepatitis (HBsAg) and sexually transmitted diseases (VDRL). Blood pressure recording, ultrasonography of the posterior segment to rule out vitreous exudation suggestive of endophthalmitis and specular microscopy was done. All penetrating keratoplasties were performed with standard technique under local anaesthesia except in children where general anaesthesia was used. Donor button oversized by 0.5 mm was used except in cases of keratoconus where the graft of same size as the recipient was used. Anterior vitrectomy was performed when required. Donor cornea was sutured to host with interrupted 10.0 nylon monofilament sutures with adjustable suture technique. All cases received amikacin (25mg), cefazolin (100mg) and dexamethasone (4mg) subconjunctivally at the end of the operation. In cases of infective keratitis dexamethasone was not given. Postoperatively, the eyes were patched and topical steroid was administered once the epithelium was intact over the transplant, except in cases of infective keratitis. Gradually steroid was tapered over a period of one year. Topical antibiotics and antifungal were continued till there was no suspicion of infection. Short-acting cycloplegic (cyclopentolate 1%) was instilled till iritis subsided.

Topical antiglaucoma medication and lubricants were given in the initial period. The patients were evaluated on first day, first week, then at the end of the first, third and six month and one year post operatively in the same manner as the preoperative assessment mentioned above. From the available record the indication for which keratoplasty was done was especially noted. The findings were compared with similar studies done in other regions of India and in the developed world. The results were statistically analyzed using paired and unpaired t Tests.

### Observations

On observing the demographic details mean age of the patients was  $43.04 \pm 17.67$  (range 6 years to 78 years). Maximum number of patients was in 41 to 50 years group (24.43%). In the present study the male recipients were more (63.66%) than female recipients (36.33%). The Right eyes were operated more (58.84%) than the Left eyes (41.15%). 'Corneal Opacity' was the most common indication for PK (39.53%) followed by AIK cases (23.47%) and PBK cases (17.04%). In 'Regrafts' PK was done in 7.71% and Descemetocele was the indication in 4.18%. Aphakic bullous keratopathy (ABK) cases (3%) and Keratoconus (3.85%) were uncommon indications for PK in the present study.

### Discussion

The institution where this study was carried out is a major referral centre for the treatment of corneal diseases in Gujarat region and therefore the findings may be considered representative of this region. On observing the demographic details mean age of the recipients was  $43.04 \pm 17.67$  (range 6 years to 78 years). Maximum number of recipients was in 41 to 50 years group (24.43%) followed by 51 to 60 years (17.36%). This suggests that the working class was more prone and exposed to the diseases that lead to indications for keratoplasty. In the present study the Male recipients were more (63.66%) than Female recipients (36.33%). This finding is explained by the male predominance in the workforce that is exposed to diseases that lead to indications for keratoplasty. The indications for PK were divided into 7 categories viz. Corneal Opacity, Active Infectious Keratitis, Regraft, Pseudophakic Bullous Keratopathy, Aphakic Bullous Keratopathy, Descemetocele and Keratoconus. (Table-4) In our present study, we found that 'corneal opacity' was the most common indication for PK (39.53%). Other studies reporting corneal opacity as commonest indication are Dandona *et al* [2] (35.6%), Shilpa *et al* [4] (42.54%) and Sony *et al* [5] (38.03%). Varghese *et al* [6] (12.39%) reports it to be less common indication. Kanavi *et al* (18.68%) and Xie *et al* (16%) report it as the second most common indication in their study. Dobbins *et al* (11.2%),

Mamalis *et al* (8.2%) report it as a less common cause while Cosar *et al*, Brady *et al* and Haaman *et al* do not even categorize this indication. [7,8,9,10,11,12,13,14,15,16,17] Most [2,4,5] studies carried out in India report corneal opacity as the significantly ( $p < 0.05$ ) commonest indication compared to the other indications. The incidence of commonest indication of corneal opacity in India is also significantly different from the incidence in the developed world. AIK (25%) was the second most common indication in our study and Xie *et al* report it as their commonest indication (31%). Saldanha *et al* (20%), Sony *et al* (28.38%) and Haamann *et al* (13.9%) also have reported AIK as their second commonest indication. Literature from western countries reports it to be less common indication for PK. Varghese *et al* [6] reports it as the commonest indication for PK. The three groups of corneal scarring due to keratitis (19.29%), AIK (23.47%) and Descemetocele (4.18%) together suggest that keratitis of various aetiologies was responsible for about 46.94% of the PKs in our series. (Table-4) The comparative analysis of the above observation reveals a pattern also suggested by other authors of Indian Subcontinent like Dandona *et al*, Shilpa *et al*, Sony *et al* that the single largest indication for PK in the developing countries was keratitis and this trend may be indicative of several problems prevalent in the developing countries related to availability, accessibility and affordability of eye care often leading to delayed diagnosis of corneal infections and consequent corneal opacification [2]. As compared with our study, the proportion of PKs done for corneal scarring and AIK has been reported to be less in the developed world. [7,8,9,10,11,12,13,14,15,16,17]

PBK (17.04%) was reported as third and therefore less common indication in our study while Saldanha *et al* (50%), Dobbins *et al* (31.5%), Cosar *et al* (27.2%), Brady *et al* (23%), Haaman *et al* (28.3%) report it as their commonest indication. Mamalis *et al* (23.0%) document it as a common indication too. This analysis illustrates how PBK has been reported to be the leading or the second most common indication for PK in the developed world. [7,8,9,10,11,12,13,14,15,16,17] Regraft was a less common indication (7.71%) in our study, while most Indian studies also report this as a less common cause, Dandona *et al* (17.1%) and Cosar *et al* (18.1%) document it as their second common indication. In the developed world regrafts have been reported to make up 6.6% to 18.2% of the indications for PK. [2,3,4,5,6,7,8,9,10,11] Descemetocele which was sequelae to healed corneal ulcer was found as a less common indication (4.18%) in our study while other authors have not categorized this condition in their study. ABK (4.18%) is a less common indication in our study and all other authors also report it as a less common indication (6.09-14%). [2,4,5,7,8,11,13,17] This could be due to

the fact that in India and worldwide intracapsular technique of cataract extraction has decreased.

Keratoconus (3.85%) is a less common indication in our study similar to Dandona (6%) and Haamann et al (6.7%) but studies of Kanavi et al (34%) done in Iran reports it as their commonest indication. Mamalis et al (24.2%) and Lindquist (24%) reports it as their commonest indication. Indication for keratoconus may be more in study by Kanavi et al and Mamalis et al (24.2%) as the incidence of keratoconus is more in the Middle East population. With the advent of newer techniques like Deep Anterior Lamellar Keratoplasty, Collagen cross linking, Intacs etc. for management of keratoconus the indication for PK is decreasing which is manifested in it being a less indication for PK in our study. Corneal Dystrophy was not found as an indication in any case in our study while Dobbins et al (23.2%), Cosar et al (15.2%) and Brady et al (16%) report it as a common indication. The leading indication for PK in our series was corneal scarring unlike the developed world where pseudophakic bullous keratopathy and keratoconus are the leading indications for PK.<sup>[7-17]</sup>

## Conclusion

Corneal scarring with vascularisation and adherent leucoma has a poor prognosis for graft survival, active infectious keratitis has a very poor prognosis for graft survival,<sup>[18,19,20]</sup> Pseudophakic bullous keratopathy have a fair to good prognosis for graft survival while Keratoconus has an excellent prognosis for graft survival after PK. Thus it can be concluded from our study that in Gujarat region of Western India, the commonest indication for PK is corneal opacity. Still today high risk cases for penetrating keratoplasty are performed more in the India than in the developed countries and, so effective preventive programmes should be implemented to reduce the incidence of corneal blindness.

## References

1. MOH& FW (NPCB), Rapid Assessment of Avoidable Blindness-India.Report-2006-2007.
2. Dandona L, Ragu K, Janarthanan M, Naduvilath T J, Shenoy R, Rao G N. Indications for penetrating keratoplasty in India. Indian J Ophthalmol 1997;45:163-8.
3. Dr May Saldanha, Dr Norman Mendonca Penetrating Keratoplasty - Indications and Post Operative Visual Outcome in A South Indian Population. IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) e-ISSN: 2279-0853, p-ISSN: 2279-0861. Volume 5, Issue 5 (Mar.- Apr. 2013), PP 18-20.
4. Shilpa A Joshi, Seema S Jagdale, Pranav D More, Madan Deshpande. Outcome of optical penetrating keratoplasties at a tertiary care eye institute in Western India. 2012 Volume : 60 | Issue : 1 | Page : 15-21.
5. Sony, Parul ; Sharma, Namrata ; Sen, Seema ; Vajpayee, Rasik B .Indications of Penetrating Keratoplasty in Northern India .Cornea: November 2005 - Volume 24 - Issue 8 - pp 989-991.
6. Aparna C Varghese, Aneeta Jabbar , Reesha KR .Outcome of a Large Series of Penetrating Keratoplasties in a Tertiary Eye Care Centre – A 6 year Retrospective Study. Kerala Journal of Ophthalmology Vol. XXIII, No.1, Mar. 2011.
7. Kanavi, Mozghan Rezaei , Javadi, Mohammad Ali ; Sanagoo, Masoomeh. Cornea: Indications for Penetrating Keratoplasty in Iran June 2007 - Volume 26 - Issue 5 - pp 561-563.
8. Dobbins, Kendall R.B. , Price, Francis W. Jr., Whitson, William E. Trends in the Indications for Penetrating Keratoplasty in the Midwestern United States. Cornea: November 2000 - Volume 19 - Issue 6 - pp 813-816.
9. Cosar, C. Banu.; Sridhar, M. S. ; Cohen, Elisabeth J. ; Held, Evan L.; Alvim, Paulo de Tarso S. ; Rapuano, Christopher J. ; Raber, Irving M. ; Laibson, Peter R. Indications for Penetrating Keratoplasty and Associated Procedures, 1996-2000. Cornea:March 2002 - Volume 21 - Issue 2 - pp 148-151.
10. Xie L, Z Song Z, Zhao J, Shi W, Wang F. Indications for penetrating keratoplasty in north China. Cornea 2007; 26:1070-3.
11. Brady SE, Rapuano CJ, Arentsen JJ, Cohen EJ, Laibson PR. Clinical indications for the procedures associated with penetrating keratoplasty, 1983-1988. Am J Ophthalmol 1989; 108:118-22.
12. Mamalis N, Anderson CW, Kreisler KR, Lundergan MK, Olson RJ. Changing trends in the indications for penetrating keratoplasty. Arch Ophthalmol 1992;110:1409-11.
13. Haamann P, Jensen OM, Schmidt P. Changing indications for penetrating keratoplasty. Acta Ophthalmol 1994; 72:443-46.
14. N Al-Yousuf, I Mavrikakis, E Mavrikakis, S M Daya. Penetrating keratoplasty: indications over a 10 year period, Br J Ophthalmol 2004;88:998-1001 doi:10.1136/bjo.2003.031948 .
15. Lindquist TD, McGlothan JS, Rotkis WM, Chandler JW. Indications for penetrating keratoplasty: 1980-1988. Cornea 1991;10:210-16.
16. Damji KF, Rootman J, White VA, Dubord PJ, Richards JS. Changing indications for penetrating keratoplasty in Vancouver, 1978-87. Can J Ophthalmol 1990; 25:243-48.
17. Hyman L, Wittpenn J, Yang C. Indications and techniques of penetrating keratoplasty, 1985-1988. Cornea 1992; 11:573-76.
18. Price FW, Whitson WE, Marks RG. Graft survival in four common groups of patients undergoing penetrating keratoplasty. Ophthalmology 1991; 98:322-28.
19. Paglen FG, Fine M, Abbott RL, Webster RG. The prognosis for keratoplasty in keratoconus. Ophthalmology 1982; 89:651-54.
20. Sugar A. An analysis of corneal endothelium and graft survival in pseudophakic bullous keratopathy. Trans Am Ophthalmol Soc 1989; 87:762-801.

## Tables

**Table 1:** Age Distribution of Patients

| Age Groups      | <10 YRS | 11-20 YRS | 21-30 YRS | 31-40 YRS | 41-50 YRS | 51-60 YRS | 61-70 YRS | >71 YRS |
|-----------------|---------|-----------|-----------|-----------|-----------|-----------|-----------|---------|
| Number of Cases | 5       | 24        | 36        | 59        | 76        | 54        | 42        | 15      |
| Cases (%)       | 1.60%   | 7.71%     | 11.57%    | 18.97%    | 24.43%    | 17.36%    | 13.50%    | 4.82%   |

**Table 2:** Sex Distribution of Patients

| Sex             | Male   | Female | Total |
|-----------------|--------|--------|-------|
| Number of Cases | 198    | 113    | 311   |
| Cases (%)       | 63.66% | 36.33% | 100%  |

**Table 3:** Laterality of the Patients Eyes

| Laterality   | Right (OD) | Left (OS) | Total |
|--------------|------------|-----------|-------|
| No. Of cases | 183        | 128       | 311   |
| % of cases   | 58.84%     | 41.15%    | 100%  |

**Table 4:** Indications for Penetrating Keratoplasty

| S.No | Indications                      | No of cases                        | Total % of cases |
|------|----------------------------------|------------------------------------|------------------|
| 1    | ACUTE INFECTIVE KERATITIS        | 73                                 | 23.47%           |
| 2    | CORNEAL OPACITY                  | a. Post keratitis                  | 60               |
|      |                                  | b. Post trauma                     | 29               |
|      |                                  | c. Adherent leucoma                | 11               |
|      |                                  | d. Corneal degeneration/ & unknown | 23               |
| 3    | DESCEMETOCELE                    | 13                                 | 4.18%            |
| 4    | REGRAFTS                         | 24                                 | 7.71%            |
| 5    | PSEUDOPHAKIC BULLOUS KERATOPATHY | 53                                 | 17.04%           |
| 6    | APHAKIC BULLOUS KERATOPATHY      | 13                                 | 4.18%            |
| 7    | KERATOCONUS                      | 12                                 | 3.85%            |
| 8    | TOTAL                            | 311                                | 100%             |

**Table 5:** Indications of PK- in Different Studies\*

| Study                                | Region        | Corneal opacity | AIK          | PBK         | ABK  | Re-grafts   | Desce metocee | Keratoconus  | Corneal dystrophy | Miscellaneous |
|--------------------------------------|---------------|-----------------|--------------|-------------|------|-------------|---------------|--------------|-------------------|---------------|
| <b>Present study</b>                 | Western India | <b>39.53</b>    | 23.47        | 17.04       | 4.18 | 7.71        | 4.18          | 3.85         |                   |               |
| Shilpa <i>et al</i> <sup>[4]</sup>   | Western India | <b>42.54</b>    |              | 17.67       | 12.5 | 14.36       |               |              | 4.97              | 7.39          |
| Dandona <i>et al</i> <sup>[2]</sup>  | South India   | <b>35.6</b>     | 12.2         | 10.6        | 11.8 | 17.1        |               | 6            | 9.6               | 5.9           |
| Saldanha <i>et al</i> <sup>[3]</sup> | South India   | 12.3            | 20           | <b>50</b>   |      | 13.3        |               |              |                   |               |
| Varghese <i>et al</i> <sup>[6]</sup> | South India   | 12.39           | <b>37.61</b> | 18.26       |      | 13.04       |               | 8.26         |                   | 10.43         |
| Sony <i>et al</i> <sup>[5]</sup>     | North India   | <b>38.03</b>    | 28.38        | 6.18        | 7.27 | 11.5        |               |              | 3.85              |               |
| Kanavi <i>et al</i> <sup>[7]</sup>   | Iran          | 18.68           |              | 9.19        | 6.09 | 5.28        |               | <b>34.51</b> | 6.47              |               |
| Dobbins <i>et al</i> <sup>[8]</sup>  | USA           | 11.2            |              | <b>31.5</b> | 7.5  | 8.9         |               | 11.4         | 23.2              |               |
| Cosar <i>et al</i> <sup>[9]</sup>    | UK            |                 |              | <b>27.2</b> |      | 18.1        |               | 15.4         | 15.2              |               |
| Xie <i>et al</i> <sup>[10]</sup>     | China         | 16              | <b>31</b>    | 13          |      | 5           |               | 13           | 4                 |               |
| Brady <i>et al</i> <sup>[11]</sup>   | USA           |                 |              | <b>23</b>   | 14   | 10          |               | 15           | 16                |               |
| Mamalis <i>et al</i> <sup>[12]</sup> | Middle East   | 8.2             |              | 23.0        |      | 13.1        |               | <b>24.2</b>  |                   | 5.8           |
| Haamann at al <sup>[13]</sup>        | Denmark       |                 | 13.9         | <b>28.3</b> | 10.0 | 11.1        |               | 6.7          |                   |               |
| NAL-Yousuf <sup>[14]</sup>           | UK            |                 |              | 7.6         |      | <b>40.9</b> |               | 15           |                   | 15.6          |
| Lindquist TD <sup>[15]</sup>         | USA           |                 |              | 21.2        |      | 8.1         |               | <b>24</b>    |                   |               |
| Damji KF <sup>[16]</sup>             | Canada        | 13.5            | 9.0          | <b>22.2</b> |      | 12.2        |               | 17.1         |                   | 8.3           |
| Hyman L <sup>[17]</sup>              | USA           |                 | 12           | <b>23</b>   | 10   | 17          |               | 13           |                   | 13            |

(\*all Values in %)