On Contra -πgb -Continuous Functions and Approximately -πgb-Continuous Functions in Topological Spaces

D.Sreeja 1* and C.Janaki 2**

¹Asst.Professor, Dept. Of Mathematics, CMS College of Science And Commerce, Coimbatore (TN) INDIA.

²Asst.Professor, Dept. Of Mathematics, L.R.G Govt.Arts College for Women, Tirupur (TN) INDIA.

Correspondence addresses

*sreejadamu@gmail.com

** janakicsekar@yahoo.com

Research Article

Abstract: In this paper a new class of sets called contra- π gb-continuous functions is introduced and its properties are studied. Further the notion of approximately - π gb-continuous functions and almost contra- π gb-continuous functions are introduced.

Mathematics Subject Classification: 54A05

Keywords: contra- π gb-continuous functions, approximately - π gb-continuous functions, almost contra- π gb- continuous functions

1.Introduction

Andrijevic [3] introduced a new class of generalized open sets in a topological space, the so-called b-open sets. This type of sets was discussed by Ekici and Caldas [11] under the name of γ -open sets. The class of b-open sets is contained in the class of semi-preopen sets and contains all semi-open sets and preopen sets. The class of b-open sets generates the same topology as the class of preopen sets. Since the advent of these notions, several research paper with interesting results in different respects came to existence [1-3-6-11-13-18-19-20]). Levine [15] introduced the concept of generalized closed sets in topological space and a class of topological spaces called T_{1/2} spaces. Extensive research on generalizing closedness was done in recent years as the notions of a generalized closed, generalized semi-closed, αgeneralized closed, generalized semi-pre-open closed sets were investigated in [2-7-15-16-17]. The finite union of regular open sets is said to be π -open. The complement of a π -open set is said to be π -

The aim of this paper is to study the notion of contra- π gb-continuous functions, and its various characterizations are given in this paper. In Section 3, we study basic properties of approximately- π gb-continuous functions. In Section 4, some properties of almost contra- π gb- continuous functions are discussed.

2. Preliminaries

Throughout this paper (X, τ) and (Y, τ) represent non-empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X,τ) , cl(A) and int(A) denote the closure of A and the interior of A respectively. (X,τ) will be replaced by X if there is no chance of confusion.

Let us recall the following definitions which we shall require later.

Definition 2.1: A subset A of a space (X, τ) is called (1) a regular open set if A= int (cl(A)) and a regular closed set if A= cl(int(A));

(2) b-open [3] or sp-open [8], γ –open [11] if A \subset cl(int(A)) \cup int (cl(A)).

The complement of a b-open set is said to be b-closed [3]. The intersection of all b-closed sets of X containing A is called the b-closure of A and is denoted by bCl(A). The union of all b-open sets of X contained in A is called b-interior of A and is denoted by bInt(A). The family of all b-open (resp. α -open, semi-open, preopen, β -open, b-closed, preclosed) subsets of a space X is denoted by bO(X)(resp. α O(X), SO(X), PO(X), β O(X), bC(X), PC(X)) and the collection of all b-open subsets of X containing a fixed point x is denoted by bO(X,x). The sets SO(X, x), α O(X, x), PO(X, x), β O(X, x) are defined analogously.

Lemma 2.2 [3]: Let A be a subset of a space X. Then

- (1) $bCl(A)=sCl(A) \cap pCl(A) = A \cup [Int(Cl(A)) \cap Cl(Int(A))];$
- (2) $bInt(A) = sInt(A) \cup pInt(A) = A \cap [Int(Cl(A)) \cup Cl(Int(A))];$

- **Definition 2.3:** A subset A of a space (X, τ) is called 1) a generalized b-closed (briefly gb-closed)[14] if $bcl(A) \subset U$ whenever $A \subset U$ and U is open.
- 2) πg -closed [10] if $cl(A) \subset U$ whenever $A \subset U$ and U is π -open.
- 3) πgb –closed [22] if $bcl(A) \subset U$ whenever $A \subset U$ and U is π -open in (X, τ) .
- By $\pi GBC(\tau)$ we mean the family of all πgb closed subsets of the space(X, τ).

Definition 2.4: A function $f: (X, \tau) \to (Y, \sigma)$ is called

- 1) π irresolute [5] if $f^1(V)$ is π closed in (X, τ) for every π -closed set V of (Y,σ) ;
- 2) b-irresolute: [11] if for each b-open set V in Y,f ¹(V) is b-open in X;
- 3) b-continuous: [11] if for each open set V in Y,f ¹(V) is b-open in X.
- 4) π gb- continuous [22] if every $f^{-1}(V)$ is π gb- closed in (X, τ) for every closed set V of (Y, σ) .
- 5) π gb- irresolute [22] if $f^{-1}(V)$ is π gb- closed in(X,
- τ) for every gbr-closed set V in (Y, σ) .

Definition 2.5[22]: A topological space X is a π gb-space if every π gb- closed set is closed.

Definition2.6 [22]: A space (X, τ) is called a $\pi gb-T_{1/2}$ space if every $\pi gb-$ closed set is b-closed.

Definition2.7: A function $f:(X,\tau) \to (Y,\sigma)$ is called

- (i) contra –continuous[9] if $f^1(V)$ is closed in X for each open set V of Y.
- (ii) contra-b-continuous [20] if $f^{-1}(V)$ is b-closed in X for each open set V of Y.
- (iii) contra- π g-continuous [12] if $f^1(V)$ is π g-closed in X for each open set V of Y.
- (iv) contra- $\pi g \alpha$ -continuous [4] if $f^{-1}(V)$ is $\pi g \alpha$ -closed in X for each open set V of Y.

Definition 2.8: A space X is said to be

- (i) strongly-S-closed [9] if every closed cover of X has a finite sub-cover.
- (ii) mildly compact [21] if every clopen cover of X has a finite sub-cover.
- (iii) strongly-S-Lindelof [9] if every closed cover of X has a countable sub-cover.

3. Contra- π gb-continuous functions:

Definition 3.1: A function $f:(X, \tau) \rightarrow (Y, \sigma)$ is called contra- π gb-continuous if $f^{-1}(V)$ is π gb-closed in (X, τ) for each open set V of (Y, σ) .

Theorem 3.2:(i) Every contra continuous function is contra- π gb- continuous.

- (ii) Every contra-b-continuous function is contra- π gb- continuous.
- (iii) Every contra- πg -continuous function is contra- $\pi g b$ -continuous.
- (iv) Every contra- $\pi g\alpha$ -continuous function is contra- πgb -continuous.

Remark 3.3: Converse of the above statements is not true as shown in the following example.

- **Example3.4** (i) Let $X = \{a,b,c\}$, $\tau = \{\Phi,X,\{a\}\}$, $\sigma = \{\Phi,X,\{b\},\{c\},\{b,c\}\}\}$. Then the identity function $f: (X,\tau) \to (X,\sigma)$ is contra- πgb continuous but not contra-continuous.
- (ii) Let $X = \{a,b,c,d\}$, $\tau = \{\Phi,X,\{a\},\{b\},\{a,b\}\}$, $\sigma = \{\Phi,X,\{b,c\}\}$. Then the identity function $f: (X,\tau) \to (X,\sigma)$ is contra- πgb continuous but not contra -b-continuous.
- (iii)Let $X=\{a,b,c,d\},\tau=\{\Phi,X,\{a\},\{d\},\{a,d\},\{c,d\}\{a,c,d\}\},$ $\sigma=\{\Phi,X,\{c\}\}$. Then the identity function $f\colon (X,\tau)\to (X,\sigma)$ is contra- πg -continuous but not contra πg -continuous.
- (iv)) Let $X = \{a,b,c,d,e\}, \tau = \{\Phi,X,\{a,b\},\{c,d\},\{a,b,c,d\}\}, \sigma = \{\Phi,X,\{a\}\}.$ Then the identity function $f: (X,\tau) \to (X,\sigma)$ is contra- πgb -continuous but not contra $\pi g\alpha$ -continuous.

Definition 3.5: A space (X,τ) is called

- (i) πgb -locally indiscrete if every πgb -open set is closed.
- (ii) a $T_{\pi gb}$ -space if every πgb -closed set is πg -closed. **Theorem3.6** (i) If a function $f:(X,\tau) \to (Y,\sigma)$ is πgb -continuous and (X,τ) is πgb -locally indiscrete, then f is contra-continuous.
- (ii) If a function $f:(X,\tau)\to (Y,\sigma)$ is contra- πgb -continuous and (X,τ) is πgb - $T_{1/2}$ space, then f is contra-b-continuous.
- (iii) If a function $f:(X, \tau) \to (Y, \sigma)$ is contra- π gb-continuous and (X,τ) is π gb- space, then f is contracontinuous.
- (iv) If a function $f:(X, \tau) \to (Y, \sigma)$ is contra- πgb -continuous and (X,τ) is $T_{\pi gb}$ space, then f is contra- πg -continuous.

Proof: (i)Let V be open in (Y,σ) . By assumption, f^1 V) is π gb-open in X. Since X is locally indiscrete, f^1 (V) is closed in X. Hence f is contra-continuous.

- (ii) Let V be open in (Y, σ) . By assumption, $f^1(V)$ is π gb-closed in X. Since X is π gb- $T_{1/2}$ space, $f^1(V)$ is b-closed in X. Hence f is contra-b-continuous.
- (iii) Let V be open in (Y, σ) . By assumption, $f^1(V)$ is πgb -closed in X. Since X is πgb -space, $f^1(V)$ is closed in X. Hence f is contra-continuous.
- (iv) Let V be open in (Y,σ) . By assumption, $f^1(V)$ is πgb -closed in X. Since X is $T_{\pi gb}$ -space, $f^1(V)$ is πgc -closed in X. Hence f is contra- πg -continuous.

Theorem 3.7: Let $A \subset Y \subset X$. (i) If Y is open in X, then $A \in \pi GBC(X)$ implies $A \in \pi GBC(Y)$. (ii) If Y is regular open and πgb -closed in X, then A

 $\in \pi GBC(Y)$ implies $A \in \pi GBC(X)$

Theorem 3.8: Suppose $\pi GBO(X, \tau)$ is closed under arbitrary union. Then the following are equivalent for a function f:

 $(X, \tau) \rightarrow (Y, \sigma)$:

- (i) f is contra-πgb-continuous.
- (ii) For every closed subset F of Y, $f^{-1}(F) \in \pi GBO(X)$
- (iii) For each $x \in X$ and each $F \in C(Y,f(x))$, there exists $U \in \pi GBO(X,x)$ such that $f(U) \subset F$.

Proof: (i) \Leftrightarrow (ii) and (ii) \Rightarrow (iii) is obvious.

(iii) \Rightarrow (ii): Let F be any closed set of Y and $x \in f^{-1}(F)$. Then $f(x) \in F$ and there exists $U_x \in \pi GBO(X)$ such that $f(U_x) \subset F$. Therefore we obtain $f^{-1}(F) = \bigcup \{U_x : x \in f^{-1}(F)\}$ and $f^{-1}(F)$ is πgb -open.

Theorem 3.9: Suppose $\pi GBO(X,\tau)$ is closed under arbitrary intersections. If a function $f: (X,\tau) \to (Y,\sigma)$ is contra- πgb -continuous and U is open in X, then $f / U: (U,\tau) \to (Y,\sigma)$ is contra- πgb -continuous.

Proof: Let V be closed in Y. Since f: $(X,\tau) \to (Y,\sigma)$ is contra- πgb -continuous, $f^{-1}(V)$ is πgb -open in (X,τ) .

 $(f/U)^{-1}(V) = f^{-1}(V) \cap U$ is πgb -open in X. By theorem 3.7 (i) $(f/U)^{-1}(V)$ is πgb -open in U.

Theorem 3.10: Suppose $\pi GBO(X,\tau)$ is closed under arbitrary unions. Let $f:(X,\tau) \to (Y,\sigma)$ be a function and $\{U_i: i\in I\}$ be a cover of X such that $U_i\in \pi GBC(X)$ and regular open for each $i\in I$. If $f/U_i: (U_i,\tau/U_i)\to (Y,\sigma)$ is contra- πgb -continuous for each $i\in I$, then f is contra- πgb -continuous.

Proof: Suppose that F is any closed set of Y. We have

$$\begin{split} f^1(F) = & \cup \ \{f^1(F) \ \cap U_i \ : i \in I\} \ = \cup \{(f/U_i)^{-1}(F) \colon \ i \in I\}. \\ \text{Since } f/U_i \ \text{is contra-πgb-continuous for each } i \in I, \ \text{it} \\ \text{follows } (f/U_i)^{-1}(F) \in & \pi GBO \ (U_i). \ \ \text{By theorem } 3.7 \\ \text{(ii), it follows that} \quad f^1(F) \in & \pi GBO(X). \ \ \text{Therefore } f \\ \text{is contra-πgb-continuous.} \end{split}$$

Theorem 3.11: Suppose $\pi GBO(X, \tau)$ is closed under arbitrary unions. If $f:(X, \tau) \to (Y, \sigma)$ is contra- πgb -continuous and Y is regular open, then f is πgb -continuous.

Proof: Let x be an arbitrary point of X and V an open set of Y containing f(x). Y is regular implies that there exists an open set W in Y containing f(x)

such that $cl(W) \subset V$. Since f is

contra - π gb-continuous, by theorem 3.8, there exists $U \in \pi GBO(X, x)$ such that $f(U) \subset cl(W) \subset V$. Hence f is π gb-continuous.

4. Approximately $-\pi gb$ -continuous functions

Definition4.1: A map $f: X \rightarrow Y$ is said to be approximately- πgb -continuous (ap- πgb -continuous) if bcl (F) \subset $f^{-1}(U)$ whenever U is an open subset of Y and F is a πgb -closed subset of X such that $F \subset f^{-1}(U)$.

Definition 4.2: A map $f: X \rightarrow Y$ is said to be approximately- π gb-closed (briefly ap- π gb-closed) if $f(F) \subset bint(V)$ whenever V is a π gb-open subset of Y, F is a closed subset of X and $f(F) \subset V$.

Definition4.3: A map $f: X \rightarrow Y$ is said to be approximately $-\pi gb$ -open (briefly ap- πgb -open if bcl $(F) \subset f(U)$ whenever U is an open subset of X, F is a πgb -closed subset of Y and $F \subset f(U)$.

Definition4.4: A map $f: X \rightarrow Y$ is said to be contra- πgb -closed (resp.contra πgb -open) if f(U) is πgb -open (resp πgb -closed) in Y for each closed (resp. open) set U of X.

Theorem 4.5: Let f: $X \rightarrow Y$ be a function, then (1) If f is contra -b- continuous, then f is an ap- πs

- (1) If f is contra -b- continuous, then f is an ap- πgb -continuous.
- (2) If f is contra- b-closed, then f is ap- π gb-closed.
- (3) If f is contra -b-open, then f is ap- πgb -open.

Proof: (1) Let $F \subset f^{-1}(U)$ where U is a open subset in Y and F is a πgb -closed subset of X. Then $bcl(F) \subset bcl(f^{-1}(U))$. Since f is contra-b- continuous, $bcl(F) \subset bcl(f^{-1}(U)) = f^{--1}(U)$. This implies f is ap- πgb -continuous.

- (2) Let $f(F) \subset V$, where F is a closed subset of X and V is a πgb -open subset of Y. Therefore f(F) = bint(f(F))bint(V). Thus f is ap- πgb -closed.
- (3) Let $F \subset f(U)$ where F is πgb -closed subset of Y and U is an open subset of X. Since f is contra -b-open,f(U) is b-closed in Y for each open set U of X. $bcl(F) \subset bcl(f(U)=f(U))$. Thus f is ap- πgb -open.

Theorem 4.6: Let $f: (X, \tau) \to (Y, \sigma)$ be a map.

- (1) If the open and b-closed sets of $(X,\,\tau)$ coincide, then f is a ap- πgb -continuous if and only if f is contra -b-continuous.
- (2) If the open and b-closed sets of (Y, σ) coincide, then f is ap- πgb -closed if and only if f is contra b-closed.

(3) If the open and b-closed sets of (Y, σ) coincide, then f is ap- πgb -open if and only if f is contra-bopen.

Proof: (1) Assume f is ap- π gb-continuous. Let A be an arbitrary subset of (X, τ) such that $A \subset U$, where U is π -open in X. Then bcl $(A) \subset$ bcl (U) = U. Therefore all subsets of (X, τ) are π gb-closed (hence all are π gb-open). So for any open set V in (Y, σ) , we have $f^{-1}(V)$ is π gb-closed in (X, τ) . Since f is ap- π gb-continuous, bcl $(f^{-1}(V)) \subset f^{-1}(V)$. Therefore $f^{-1}(V)$ is b-closed in (X, τ) and f is contra-b-continuous.

Converse is obvious from theorem 4.5.

(2) Assume f is ap- π gb-closed.As in (1), we get that all subsets of (Y, σ) are π gb-open. Therefore for any closed subset F of (X,τ) , f(F) is π gb-open in Y.Since f is ap- π gb-closed, $f(F) \subset \text{bint } f(F)$.Hence f(F) is bopen and thus f is contra b-closed.

Converse is obvious from theorem 4.5.

(3) Assume f is ap- π gb-open. As in (1) all subsets of Y are π gb-closed. Therefore for any open subset F of (X, τ) , f(F) is π gb-closed in (Y, σ) . Since f is ap- π gb-open, $bcl(F) \subset f(F)$. Hence f(F) is b-closed and thus f is contra b-open. Converse is obvious from theorem 4.5.

Theorem 4.7: If a map $f: X \rightarrow Y$ is ap- πgb -continuous and b-closed map, then the image of each πgb -closed set in X is πgb -closed set in Y.

Proof: Let F be a π gb-closed subset of X. Let f(F) $\subset V$ where V is an open subset of Y. Then $F \subset f^1(V)$ holds. Since f is ap- π gb- continuous, bcl(F) $\subset f^1(V)$. Thus $f(bcl(F) \subset V)$. Therefore we have bcl(f(F)) $\subset bcl(f(bcl(F))=f(bcl(V)) \subset V$. Hence f(F) is π gb-closed set in Y.

Theorem 4.8: If f: $X \rightarrow Y$ is a π -continuous and b-closed function, then f (A) is π gb-closed in Y for every π gb-closed set A of X.

Proof: Let A be π gb-closed set in X. Let $f(A) \subset V$, where V is a π -open set in Y. Since f is π -continuous, $f^1(V)$ is π -open in X and $A \subset f^1(V)$. Then we have $bcl(A) \subset f^1(V)$ and so $f(bcl(A)) \subset V$. Since f is b-closed, f(bcl(A)) is b-closed in Y. Hence $bcl(f(A)) \subset bclf(bcl(A)) = f(bcl(A)) \subset V$. This shows that f(A) is π gb closed in Y.

Definition 4.9: A map f: $X \rightarrow Y$ is said to be contrageb-irresolute if $f^{-1}(V)$ is πgb - closed in X for each $V \in \pi GBO(Y)$.

Definition4.10: A space X is said to be π gb-Lindelof if every cover of X by π gb-open sets has a countable sub cover.

Theorem 4.11: Let f: $X \rightarrow Y$ and g: $Y \rightarrow Z$ be two maps such that gof: $X \rightarrow Z$.

- (i) If g is πgb -continuous and f is contra $-\pi gb$ -irresolute, then gof is contra πgb continuous.
- (ii) If g is πgb -irresolute and f is contra- πgb irresolute, then gof is contra- πgb irresolute.

Proof:(i) Let V be closed set in Z. Then $g^{-1}(V)$ is πgb -closed in Y. Since f is contra $-\pi gb$ - irresolute, $f^{-1}(g^{-1}(V))$ is πgb -open in X. Hence gof is contra πgb -continuous.

(ii)Let V be πgb -closed in Z. Then $g^{-1}(V)$ is πgb -closed in Y. Since f is contra $-\pi gb$ - irresolute, $f^{-1}(g^{-1}(V))$ is πgb -open in X. Hence gof is contra πgb -irresolute.

Theorem 4.12: Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two maps such that (gof): $X \rightarrow Z$.

- (i) If f is closed and g is ap- π gb- closed, then (gof) is ap- π gb- closed.
- (ii) If f is ap- π gb- closed and g is π gb-open and g⁻¹ preserves π gb-open sets, then (gof) is ap- π gb- closed.
- (iii) If f is ap- π gb-continuous and g is continuous, then gof is ap- π gb-continuous

Proof: (i) Suppose B is an arbitrary closed subset in X and A is a πgb - open subset of Z for which (gof)

- (B) \subseteq A . Then f(B) is closed in Y because f is closed. Since g is ap- π gb -closed, g (f(B)) \subset bint (A) .This implies (gof) is ap- π gb-closed.
- (ii) Suppose B is an arbitrary closed subset of X and A is a πgb -open subset of Z for which (gof) (B) \subseteq A.Hence $f(B) \subset g^{-1}$ (A).Then $f(B) \subset bint$ (g^{-1} (A)) because g^{-1} (A) is πgb -open and f is ap- πgb -closed. Hence (gof) (B) = $g(f(B)) \subseteq g[bint$ (g^{-1} (A)] $\subseteq bint$ (g g^{-1} (A) $\subseteq bint$ (A).This implies that (gof) is ap- πgb -closed.
- (iii)Suppose F is an arbitrary πgb -closed subset of X and U is open in Z for which $F \subset (gof)^{-1}(U)$. Then $g^{-1}(U)$ is open in Y ,because g is continuous. Since f is ap- πgb continuous, then we have bcl $(F) \subseteq f^1(g^{-1}(U)) = (gof)^{-1}(U)$. This shows that gof is ap- πgb -continuous.

5. Almost Contra- π gb-Continuous Functions

Definition 5.1: A function $f:(X, \tau) \to (Y, \sigma)$ is said to be almost contra- πgb - continuous if $f^{-1}(V) \in \pi GBC(X, \tau)$ for each $V \in RO(Y, \sigma)$.

- **Theorem 5.2:** Suppose $\pi GBO(X,\tau)$ is closed under arbitrary unions. Then the following statements are equivalent for a function $f: (X, \tau) \to (Y, \sigma)$.
- (i) f is almost contra- π gb- continuous.
- (ii) $f^{-1}(F) \in \pi GBO(X, \tau)$ for every $F \in RC(Y, \sigma)$.
- (iii) For each $x \in X$ and each regular closed set F in Y containing f(x), there exists a πgb -open set U in X containing x such that $f(U) \subset F$.
- (iv)For each $x \in X$, and each regular open set V in Y not containing f(x),there exists a πgb -closed set K in X not containing x such that $f^{-1}(V) \subset K$.
- (v) $f^{-1}(int(cl(G))) \in \pi GBC(X,\tau)$ for every open subset G of Y.
- (vi) $f^1(int(cl(F))) \in \pi GBO(X,\tau)$ for every closed subset F of Y.
- **Proof**: (i) \Rightarrow (ii).Let $F \in RC(Y, \sigma)$.Then $Y F \in RO(Y, \sigma)$ by assumption. Hence $f^{-1}(Y F) = X f^{-1}(F) \in \pi GBC(X, \tau)$. This implies $f^{-1}(F) \in \pi GBO(X, \tau)$.
- (ii) \Rightarrow (i).Let $V \in RO(Y,\sigma)$.Then by assumption $(Y V) \in RC(Y,\sigma)$. Hence $f^{1}(Y F) = X f^{1}(F) \in \pi GBO(X,\tau)$.This implies $f^{1}(F) \in \pi GBC(X,\tau)$.
- (ii) \Rightarrow (iii).Let F be any regular closed set in Y containing $f(x).f^{-1}(F) \in \pi GBO(X,\tau)$ and $x \in f^{-1}(F)$ (by(ii)). Take $U = f^{-1}(F).$ Then $f(U) \subset F$.
- (iii) \Rightarrow (ii) Let $F \in RC(Y,\sigma)$ and $x \in f^{-1}(F)$. From (iii), there exists a πgb -open set U_x in X containing x such that $U_x \subset f^{-1}(F)$. We have $f^{-1}(F) = \bigcup \{U_x : x \in f^{-1}(F)\}$. Then $f^{-1}(F)$ is πgb -open.
- (iii) \Rightarrow (iv) Let V be any regular open set in Y containing f(x).Then Y-V is a regular closed set containing f(x).By (iii), there exists a π gb-open set U in X containing x such that f(U) \subset Y-V. Hence U \subset f 1 (Y-V) \subset X- f 1 (V).Then
- $f^{1}(V) \subset X$ -U. Take K=X-U. We obtain a πgb -closed set in X not containing x such that $f^{1}(V) \subset K$.
- (iv) \Rightarrow (iii). Let F be regular closed set in Y containing f(x). Then Y-F is regular open set in Y containing f(x). By (iv), there exists a π gb-closed set K in X not containing x such that $f^1(Y-F) \subset K$. Then X- $f^1(F) \subset K$ implies X-K $\subset f^1(F)$. Hence f (X-K) $\subset F$. Take U=X-K. Then U is a π gb-open set U in X containing x such that $f(U) \subset F$.
- (i) \Rightarrow (v). Let G be a open subset of Y. Since int(cl(G)) is regular open, then by (i), f^{-1} (int(cl(G)) \in π GBC(X, τ).
- (v) \Rightarrow (i).Let $V \in RO(Y,\sigma)$.Then V is open in Y. By (v),

- $\begin{array}{ll} f^{\text{-}l}(\text{int}(cl(G)){\in}\pi GBC(X,\tau).This & \text{implies} & f^{\text{-}l}(V){\in}\pi GBC(X,\tau) \end{array}$
- $(ii) \Leftrightarrow (vi)$ is similar as $(i) \Leftrightarrow (v)$.
- **Theorem 5.3:** If $f:(X,\tau)\to (Y,\sigma)$ is an almost contra- πgb continuous function and A is a open subset of X, then the restriction $f/A:A\to Y$ is almost contra- πgb continuous.
- **Proof:** Let $F \in RC(Y)$. Since f is almost contra- πgb - continuous, $f^1(F) \in \pi GBO(X)$. Since A is open, it follows that $(f/A)^{-1}(F) = A \cap f^1(F) \in \pi GBO(A)$. Therefore f/A is an almost contra- πgb continuous.
- **Theorem 5.4:** Let $f: (X,\tau) \to (Y,\sigma)$ be an almost contra- π gb-continuous surjection. Then the following statements hold.
- (i) If X is π GB-closed, then Y is nearly compact.
- (ii) If X is π GB-Lindelof, then Y is nearly Lindelof.
- (iii)If X is countably- π GB-closed,then Y is nearly countably compact.
- (iv)If X is πGBO -compact,then Y is S-closed.
- (v)If X is π GB-Lindelof,then Y is S- Lindelof.
- (vi)If X is countable πGB -compact, then Y is countably S-closed compact.
- **Proof:** (i) Let $\{V_b:b{\in}I\}$ be regular open cover of Y. Then f is almost contra- πgb -continuous implies $\{f^{-1}\}$
- $(V_b):b \in I$ is a πgb -closed cover of X.
- Since X is πGB -closed,there exists a finite subset I_0 of I such that $X=\cup \{f^{-1}(V_b):b\in I_0\}$. Then we have $Y=\cup \{V_b:b\in I_0\}$. Hence Y is nearly compact.

Proof of (ii) and (iii) is similar to that of (i).

- (iv)Let $\{V_b : b \in I\}$ be regular closed cover of Y. Then f is almost contra- πgb -conntinuous implies $\{f^{-1}(V_b): b \in I\}$ is a πgb -open cover of X.By
- assumption, there exists a finite subset I_0 of I such that $X=\cup \{f^{-1}(V_b):b\in I_0\}$. Then we have $Y=\cup \{V_b:b\in I_0\}$. Hence Y is nearly compact. Proof of (v) and (vi) is similar to that of (iv).
- **Theorem 5.5:** If $f: (X,\tau) \to (Y,\sigma)$ is almost contra- πgb -continuous and almost πgb -continuous surjection. Then
- (i)If X is mildly πgb -compact, then Y is nearly compact.
- (ii)If \boldsymbol{X} is mildly countably - $\pi gb\text{-}compact,$ then \boldsymbol{Y} is nearly countably compact.
- (iii) If X is mildly πgb -Lindelof,, then Y is nearly Lindelof.
- **Proof:** (i) Let $V \in RO(Y)$. Since f is almost contra- π gb-continuous and almost π gb-continuous, $f^{-1}(V)$ is π gb-closed and π gb-open in X respectively. Then $f^{-1}(V)$

- (V) is πgb -clopen in X. Let $\{V_b:b\in I\}$ be any regular open cover of Y. Then
- $\{f^{-1}(V_b):b\in I\}$ is πgb -clopen in X.Since X is mildly πgb -compact, there exists a finite subset I_0 of I such that $X=\cup$
- $\begin{array}{ll} \{f^{-1}\ (V_b) : b \in I_0\}. Since\ X\ is\ surjective,\ we\ obtain \\ Y = \cup\, \{V_b : b \in I_0\}. Hence\ Y\ is\ nearly\ compact. \\ Proof\ of\ (ii)\ and\ (iii)\ is\ similar\ to\ that\ of\ (i). \end{array}$

References

- [1] D. Andrijevic, Semipreopen sets, Mat. Vesnik 38, 24-
- [2] S. P. Arya and T. M. Nour, Characterizations of snormal spaces, Indian J. Pure Appl. Math.21, no. 8, 717-719, 1990.
- [3] D. Andrijevic, On b-open sets, Mat. Vesnik 48, 59-64,
- [4] I.Arokiarani, K.Balachandran and C.Janaki, On contra-πgα-continuous functions, Kochi.J.Math.,(3), 201-209, 2008.
- [5] G. Aslim, A. Caksu Guler and T. Noiri, On πgs-closed sets in topological Spaces, Acta Math. Hungar., 112
 (4), 275-283, 2006.
- [6] M. Caldas and S. Jafari, On some applications of bopen sets in topological spaces, Kochi J.Math. 2, 11-19, 2007.
- [7] J. Dontchev, On generalizing semi-preopen sets,Mem. Fac. Sci. Kochi Univ. Ser. AMath. 16, 35-48,1995.
- [8] J. Dontchev and M. Przemski, On the various decompositions of continuous and some weakly

- continuous functions, Acta Math. Hungar. 71, 109120, 1996.
- [9] J.Dontchev, Contra continuous function and strongly S-closed spaces, Internat. J.Math.Math.Sci.19, 303-310, 1996.
- [10] J.Dontchev and T.Noiri, Quasi Normal Spaces and πg -closed sets ,Acta Math. Hungar.,89(3), 211-219, 2000.
- [11] E. Ekici and M. Caldas, Slightly -continuous functions, Bol. Soc. Parana. Mat. (3) 22, 63-74, 2004.
- [12] E.Ekici, On contra-πg-continuous, Chaos, Solitons and Fractals, 35(1), 71-81, 2008.
- [13] M. Ganster and M. Steiner, On some questions about b-open sets, Questions Answers Gen. Topology 25, 45-52, 2007.
- [14] M. Ganster and M. Steiner, On bτ-closed sets, Appl. Gen. Topol. 8, 243-247, 2007.
- [15] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2) 19, 89-96, 1970.
- [16] H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized α-closed sets and α – generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. AMath. 15, 51-63, 1994.
- [17] H. Maki, J. Umehara and T. Noiri, Every topological space is pre-T_{1/2}, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 17, 33-42, 1996.
- [18] A. A. Nasef, On b-locally closed sets and related topics, Chaos Solitons Fractals 12, 1909-1915, 2001.
- [19] A. A. Nasef, Some properties of contra--continuous functions, Chaos Solitons Fractals 24, 471-477, 2005.
- [20] J. H. Park, Strongly θ-b-continuous functions, Acta Math.Hungar. 110, no.4, 347-359, 2006.
- [21] R.Staum, The algebra of bounded continuous functions into a non archemedian field, Pacific J.Math., 50, 169-185, 1974.
- [22] D. Sreeja and C. Janaki ,On πgb- Closed Sets in Topological Spaces, International Journal of Mathematical Archive-2(8), 1314-1320, 2011.