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Introduction 
The following result due to Enestrom and Kakeya [12] is well known in the theory of distribution of zeros of 

polynomials. 
 

Theorem A (1): If P (z) =∑ ��
�
� �� be a polynomial of degree n such that  

 an ≥ an-1 ≥ an-2 ≥------≥a1 ≥a0 > 0 , a j є R         (1) 

Then P (z) does not vanish in |z|>1 

This is a very elegant result but it is equally limited in scope as the hypothesis is very restrictive. 

A. Joyal et al [11] extended this theorem to the polynomials whose coefficient are monotonic but not necessarily non 

negative and proved the following: 
 

Theorem A (2): If P (z) =∑ ��
�
� �� be a polynomial of degree n such that  

 an ≥ an-1 ≥ an-2 ≥------≥a1 ≥a0 , a j є R     

Then all the zeros of P (z) lie in  

 |z| ≤ (an – a0 + | a0|) ÷ | an|.           (2) 

This was further improved upon by Dewan and Govil[7].  

Shah and Liman [15] relaxed the hypothesis and proved the following result. 
 

Theorem B: Let P (z) =∑ ��
�
� �� be a polynomial of degree n with complex coefficients. If 

 Re (aj) =αj and Im(aj ) = βj , for j = 0,1,2-----n. such that for some λ≥ 1, 

 λαn ≥ αn-1 ≥ αn-2 ≥------≥ α1 ≥ α0 ,  

 βn ≥ βn-1≥ βn-2 ≥------≥β1≥ β0 > 0  

Then all the zeroes of P (z) lie in 

 |z + 
��
	�

 (λ -1)| ≤ [λαn - α0+ |α0| +�� ] ÷ | an|         (3) 

 Aziz and Zargar [1] relaxed the hypothesis of Theorem A (1) and proved the following extensions of Enestrom-Kakeya 

theorem. 
 

Theorem C: Let P (z) =∑ ��
�
� �� be a polynomial of degree n with complex coefficients such that for some k≥1,  

 kan ≥an-1≥----- a1≥a0>0  

Then all the zeros of P(z) lie in |z+k-1| ≤ k         (4) 
 

Theorem D: Let P (z) =∑ ��
�
� �� be a polynomial of degree n with complex coefficients. If 

 Re (aj) =αj and Im(aj ) = βj , for j = 0,1,2-----n. such that for some k ≥ 1, 

 λαn ≤ αn-1 ≤ ----≤�
�� ≤ �
≥�
��≥----≥ α1 ≥ α0 

 βn ≥ βn-1≥ βn-2 ≥------≥β1≥ β0 > 0  

Where 0 ≤ p ≤ n-1, then all the zeros of P(z) lie in 

 |z + 
��
	�

 (λ -1)| ≤ [2αp - λαn - α0 +|α0| + �� ] ÷ | an|           (5) 

Recently, Choo [5] has proved the following theorem  
 



Ajeet Singh, Neha 

Copyright © 2014, Statperson Publications, Iinternational Journal of Statistika and Mathematika, ISSN: 2277- 2790 E-ISSN: 2249-8605, Volume 10 Issue 2    2014 

Theorem E: Let P (z) =∑ ��
�
� �� be a polynomial of degree n with complex coefficients. If 

 Re (aj) =αj and Im(aj ) = βj , for j = 0,1,2-----n. such that for some p and r and for some λ , µ > 0 

 λαn ≤ αn-1 ≤ ----≤�
�� ≤ �
≥�
��≥----≥ α1 ≥ α0 

 µβn ≤ βn-1 ≤ ---- ≤ ���� ≤ ��≥����≥----≥ β1 ≥ β0  

Then P(z) has all its zeros in R1 ≤ ⃒z⃒≤ R2 where 

R1 = 
|	�|
��

 and R2 = 
��

|	�|  
With  

M1 = |��| + |(� − 1)��| +|(� − 1)��| + 2(�
 + ��) – (λ��+µ��) - (�� + ��) 

And  

M2 = |(� − 1)��| +|(� − 1)��| + 2(�
 + ��) – (λ��+µ��) - (�� + ��) + |��|  

Here we notice that the annulus R1 ≤ ⃒z⃒≤ R2 is expressed in terms of λ and µ as associated to the coefficients αn and βn 

in the given constraint in Theorem E.  
 

Theorem 1: Let P (z) =∑ ��
�
� �� be a polynomial of degree n with complex coefficients. If 

 Re (aj) =αj and Im(aj ) = βj , for j = 0,1,2-----n. such that for some δ,η ≥ 1 and τ,σ ≤ 1 

 δαn ≤ αn-1 ≤ ----≤�
�� ≤ �
≥�
��≥----≥ α1 ≥ τα0 

 ηβn ≤ βn-1 ≤ ---- ≤ ���� ≤ ��≥����≥----≥ β1 ≥ σβ0           (6)  

where 0 ≤ p,q ≤ n-1, then all the zeros of P(z) lie in the disk 

 R 
δη
≤ |z-zδη| ≤ Rδη ,             (7)  

where   

zδη = −[(!��)��
	�

 + i (η��)"�
	�

] ,            (8a) 

  

 Rδη = 
�

|	�|[2(�
 + ��)-($�� +%��)-τα0+ (1-τ)α0-σ�0 + (1-σ) �0 +|��|  

 (8b) 

 R
δη 

= 
|&�|

|	�|�(δ��) |���(η��)|"�|�'(α)� β*+�(δα,�ηβ,+�τ��� (��τ)���σ"� � (��σ) "�  

 - 
�

|	�|[(δ− 1)'��'+(η− 1)'��
']�/' (8c) 

 

Proof: Consider the polynomial 

F (z) = (1-z) P (z) 
  

 = -z
n
{( α n +

 
iβn)z+(δ-1)��+i(η-1)��}+[( δαn – αn-1)z

n 
+(αn-1- αn-2)z

n-1 
+--------------------- + {(α1-τα0)+( τα0 –α0)z+ α0]+i[( 

η��– β���)z
n 
+ ( βn-1- β n-2 )z

 n-1
+-----+{(β1-σβ0)+( σβ0 –β0 )}z+β0]  

 

Now if |z|>1, 
�

|0|�12 < 1, j= 0, 1, 2---n-1 

 Therefore, 

 |F (z)| ≥ |z|
n 
[|anz+( δ-1)��+i(η-1)�� | –{2�
+2�� − δ��–  ηβn − τ�� + (��)(1 − τ) − σ�� + 

  (��)(1 − 5) + |��|}] 

  >0, if  

  | z + 
(δ��)��

	�
 + i

(η��)"�
	�

 | > 

 �
|	�| {2(αp + βq)-(δαn + ηβn) - τ�� + (��)(1 − τ) − σ�� + (��)(1 − 5) + |��|} 

 

This shows that the zeros of F (z) having modulus greater than 1 lie in 
 

{| z + 
(6��)��

	�
 + i

(7��)"�
	�

 | ≤  
�

|	�| {2(αp + βq)-(δαn + ηβn) - τ�� + (��)(1 − τ) − σ�� + (��)(1 − 5) + |��|}     (9) 

 

Since all the zeros of P(z) with modulus greater than 1 lie in the disc given by eq(9), it can be shown that Rδη ≥ 1. 

Consequently the zeros of P (z) with modulus less than or equal to one are already contained in the disk |z-zδη| ≤ Rδη .  

             (10) 
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In order to prove the lower bound Rδη ≤ |z-zδη| we first prove the following lemma. 
 

Lemma: Let P (z) =∑ ��
�
� �� be a polynomial of degree n with complex coefficients. Then for |z|<1, we show that  

 

|z| ≤ 
|&�|
9�

 = 
|&�|

|&:|�( δ��)|��|�(η��)|"�|�'(α; � β*)�(δα: � ηβ:)� τ���(��)(��τ)� σ"��("�)(��<)  

Proof: Let |z|<1.  

 Consider F (z) = (1-z) P (z)  

= χ (z) + a0,             (11) 

Where  

χ(z)= {( α n +iβn)z+(δ-1)��+i(η-1)��}+[( δαn - αn-1)z
n 
+( αn-1- αn-2)z 

n-1 
+------------ + {(α1-τα0)+( τα0–α0)z +       i[( η��  - 

β���)z
n 
+ ( βn-1- β n-2 )z

 n-1
+-----+{(β1-σβ0)+( σβ0- β0 )}z] 

  ∴ | χ(z)| =|{( α n+iβn)z+(δ-1)��+i(η-1)��}+[( δαn - αn-1)z
n 
+( αn-1- αn-2)z 

n-1 
+--------- +  

 {(α1-τα0)+( τα0- α0)z +i [( η��  - β���)z
n 
+ ( βn-1- β n-2 )z

 n-1
+-----+{(β1-σβ0)+( σβ0- β0)}z] |  

 ≤ | anz|+|( δ-1)��|+|( η-1)��| +[M1]  

Where 

 M1 =2(αp + βq)-(δαn + ηβn)- τ�� + (��)(1 − τ) − σ�� + (��)(1 − 5)      

             (12) 

Since χ (0)=0,it follows by Schwarz lemma that 

 | χ (z)|≤ M1|z| for |z|<1 
 

Therefore for |z|<1, 

 | F (z)| = | χ(z) + a0 | ≥ |a0|-| χ(z) | > 0 , if 

  |a0| > |z|[M2] , 
 

where M2 = |an|+( δ− 1)|��| + (η− 1)|��|+ M1        
     

= |an|+( δ− 1)|��| + (η− 1)|��| +2(αp + βq)-(δαn + ηβn)- τ�� + (��)(1 − τ) −  σ�� + (��)(1 − 5) 

              (13)
 

Thus, |z| ≤ 
|&�|
9�

  

   = 
|&�|

|&:|�( δ��)|��|�(η��)|"�|�'(α; � β*)�(δα: � ηβ:)� τ���(��)(��τ)� σ"��("�)(��<)      (14)  

Hence P(z) does not vanish in |z| < 
|&�|
9�

 . It can be shown that M2 ≤ |a0| so that |z|≤1. Hence P (z) has all its zeros in 
|&�|
9�

≤ 

|z|.               (15)  
   

Now we prove the second part of the main theorem (1) 

 Since |z - zδη | ≥ |z |- |zδη | , (16) 

 then using eq(15) of above lemma in eq(16), we have 

 |z - zδη | ≥ |z |- |zδη | ≥ 
|&�|
9�

 - |zδη |  

 This implies 
|	�|
9�

 - |zδη | ≤ |z - zδη | 

 
|&�|
9�

 - | (δ��)��
	�

 + i (η��)"�
	�

| ≤ |z - zδη |       (17)  
  

 From eq(17) we obtain R
δη

 ≤ |z-zδη| ,           (18)  

 where R
δη

 is given in eq 8( c )  

 On combining eq(10) and eq(18) the above theorem is completely proved. 
  

Conclusion  
We get (i) if τ = 1, σ≠1, then all the zeros of P(z) lie in the disk 

 R 
22
≤ |z-zδη| ≤ R11, (19)  

where,  

R11 = 
�

|	�|[2(�
 + ��)-($�� +%��)-α0 -σ�0 + (1-σ) �0 +|��| (19a) 

 

 R
22

= 
|&�|

|	�|�(δ��) |���(η��)|"�|�'(α)� β*+�(δα,�ηβ,+��� �σ"� � (��σ) "�  
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  - 
�

|	�|[(δ− 1)'��'+(η− 1)'��
']�/' (19b) 

and  
 

(ii) if σ = 1, τ≠ 1, then all the zeros of P(z) lie in the disk 

 R 
44
≤ |z-zδη| ≤ R33 , (20)  

      

where ,  

 R33 = 
�

|	�|[2(�
 + ��)-($�� +%��)-α0-σ�0 + (1-σ) �0 +|��| (20a) 
 

 R
44 

= 
|&�|

|	�|�(δ��) |���(η��)|"�|�'(α)� β*+�(δα,�ηβ,+����σ"� � (��σ) "�  

 - 
�

|	�|[(δ− 1)'��'+(η− 1)'��
']�/' (20b) 

and zδη is given by eq(8a)  

(iii) Further we note with regard to the upper bound of the Theorem 1 given as |z-zδη| ≤ Rδη ,  

 where 

 zδη = −[(!��)��
	�

 + i (η��)"�
	�

] = A+iB where A= − (!��)��
	�

 and B= − (η��)"�
	�

 

 and  

 Rδη = 
�

|	�|[2(�
 + ��)-($�� +%��)-τα0+ (1-τ) α0-σ�0 + (1-σ) �0 +|��| ]  

 and that if we transfer the centre of the above disc at the origin so that equation (9) can be written as  

 |z| = | � −  �67?????????? + zδη | ≤ |z-zδη| +|zδη| 

 ≤ Rδη+ |zδη| 

 ≤
�

|	�| {2(αp + βq)-(δαn + ηβn)- τ�� + (��)(1 − τ) − σ�� + (��)(1 − 5) + |��|} + √A' + B' (21) 

Comparing this bound with upper bound of Theorem E given by: 

|z | ≤ R11 = 
��

|	�|  

 ≤ 
�

|	�| { |(� − 1)��| +|(� − 1)��| + 2(�
 + ��) – (λ��+µ��) - (�� + ��) + |��|} 

 ≤ 
�

|	�| [2(αp + βq)-( λ��+ µβ�)-( α�+β�)+|��| ] + |A| + |B| (20) 

We here find that the present bound given by (21) corresponding to τ = 1=σ is sharper than eq (20) of Choo [5], in view 

of √A' + B' < A+B. 
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