

Annular Bounds for the Zeros of Complex Polynomials

Ajeet Singh¹, Neha²

Department of Mathematics Lingayas University Faridabad-121002, Delhi NCR, INDIA.

* Corresponding Address:

nehavaid2311@gmail.com

Research Article

Abstract: The location of zeros of complex polynomials has been investigated in frame work of Enestrom and Kakeya theorem. In this paper we extend some existing results on the zeros of complex polynomials by considering restrictions on its coefficients.

Mathematics Subjects Classification: 26C10, 30C10, 30C15

Keywords: Polynomials, Zeros, Enestrom - Kakeya theorem and the sharper bounds.

Introduction

The following result due to Enestrom and Kakeya [12] is well known in the theory of distribution of zeros of polynomials.

Theorem A (1): If $P(z) = \sum_0^n a_j z^j$ be a polynomial of degree n such that

$$a_n \geq a_{n-1} \geq a_{n-2} \geq \dots \geq a_1 \geq a_0 > 0, a_j \in \mathbb{R} \quad (1)$$

Then $P(z)$ does not vanish in $|z| > 1$

This is a very elegant result but it is equally limited in scope as the hypothesis is very restrictive.

A. Joyal *et al* [11] extended this theorem to the polynomials whose coefficient are monotonic but not necessarily non negative and proved the following:

Theorem A (2): If $P(z) = \sum_0^n a_j z^j$ be a polynomial of degree n such that

$$a_n \geq a_{n-1} \geq a_{n-2} \geq \dots \geq a_1 \geq a_0, a_j \in \mathbb{R}$$

Then all the zeros of $P(z)$ lie in

$$|z| \leq (a_n - a_0 + |a_0|) \div |a_n|. \quad (2)$$

This was further improved upon by Dewan and Govil[7].

Shah and Liman [15] relaxed the hypothesis and proved the following result.

Theorem B: Let $P(z) = \sum_0^n a_j z^j$ be a polynomial of degree n with complex coefficients. If

$\operatorname{Re}(a_j) = a_j$ and $\operatorname{Im}(a_j) = \beta_j$, for $j = 0, 1, 2, \dots, n$. such that for some $\lambda \geq 1$,

$$\lambda a_n \geq a_{n-1} \geq a_{n-2} \geq \dots \geq a_1 \geq a_0,$$

$$\beta_n \geq \beta_{n-1} \geq \beta_{n-2} \geq \dots \geq \beta_1 \geq \beta_0 > 0$$

Then all the zeroes of $P(z)$ lie in

$$|z + \frac{\alpha_n}{a_n} (\lambda - 1)| \leq [\lambda a_n - a_0 + |a_0| + \beta_n] \div |a_n| \quad (3)$$

Aziz and Zargar [1] relaxed the hypothesis of Theorem A (1) and proved the following extensions of Enestrom-Kakeya theorem.

Theorem C: Let $P(z) = \sum_0^n a_j z^j$ be a polynomial of degree n with complex coefficients such that for some $k \geq 1$,

$$k a_n \geq a_{n-1} \geq \dots \geq a_1 \geq a_0 > 0$$

Then all the zeros of $P(z)$ lie in $|z + k - 1| \leq k$ (4)

Theorem D: Let $P(z) = \sum_0^n a_j z^j$ be a polynomial of degree n with complex coefficients. If

$\operatorname{Re}(a_j) = a_j$ and $\operatorname{Im}(a_j) = \beta_j$, for $j = 0, 1, 2, \dots, n$. such that for some $k \geq 1$,

$$\lambda a_n \leq a_{n-1} \leq \dots \leq a_{p+1} \leq a_p \geq a_{p-1} \geq \dots \geq a_1 \geq a_0$$

$$\beta_n \geq \beta_{n-1} \geq \beta_{n-2} \geq \dots \geq \beta_1 \geq \beta_0 > 0$$

Where $0 \leq p \leq n-1$, then all the zeros of $P(z)$ lie in

$$|z + \frac{\alpha_n}{a_n} (\lambda - 1)| \leq [2a_p - \lambda a_n - a_0 + |a_0| + \beta_n] \div |a_n| \quad (5)$$

Recently, Choo [5] has proved the following theorem

Theorem E: Let $P(z) = \sum_0^n a_j z^j$ be a polynomial of degree n with complex coefficients. If $\operatorname{Re}(a_j) = a_j$ and $\operatorname{Im}(a_j) = \beta_j$, for $j = 0, 1, 2, \dots, n$. such that for some p and r and for some $\lambda, \mu > 0$

$$\lambda a_n \leq a_{n-1} \leq \dots \leq a_{p+1} \leq a_p \geq a_{p-1} \geq \dots \geq a_1 \geq a_0$$

$$\mu \beta_n \leq \beta_{n-1} \leq \dots \leq \beta_{r+1} \leq \beta_r \geq \beta_{r-1} \geq \dots \geq \beta_1 \geq \beta_0$$

Then $P(z)$ has all its zeros in $R_1 \leq |z| \leq R_2$ where

$$R_1 = \frac{|a_0|}{M_1} \text{ and } R_2 = \frac{M_2}{|a_n|}$$

With

$$M_1 = |a_n| + |(\lambda - 1)a_n| + |(\mu - 1)\beta_n| + 2(a_p + \beta_r) - (\lambda a_n + \mu \beta_n) - (a_0 + \beta_0)$$

And

$$M_2 = |(\lambda - 1)a_n| + |(\mu - 1)\beta_n| + 2(a_p + \beta_r) - (\lambda a_n + \mu \beta_n) - (a_0 + \beta_0) + |a_0|$$

Here we notice that the annulus $R_1 \leq |z| \leq R_2$ is expressed in terms of λ and μ as associated to the coefficients a_n and β_n in the given constraint in Theorem E.

Theorem 1: Let $P(z) = \sum_0^n a_j z^j$ be a polynomial of degree n with complex coefficients. If

$\operatorname{Re}(a_j) = a_j$ and $\operatorname{Im}(a_j) = \beta_j$, for $j = 0, 1, 2, \dots, n$. such that for some $\delta, \eta \geq 1$ and $\tau, \sigma \leq 1$

$$\delta a_n \leq a_{n-1} \leq \dots \leq a_{p+1} \leq a_p \geq a_{p-1} \geq \dots \geq a_1 \geq \tau a_0$$

$$\eta \beta_n \leq \beta_{n-1} \leq \dots \leq \beta_{q+1} \leq \beta_q \geq \beta_{q-1} \geq \dots \geq \beta_1 \geq \sigma \beta_0$$

where $0 \leq p, q \leq n-1$, then all the zeros of $P(z)$ lie in the disk

$$R_{\delta\eta} \leq |z - z_{\delta\eta}| \leq R_{\delta\eta}, \quad (6)$$

where

$$z_{\delta\eta} = -\left[\frac{(\delta-1)a_n}{a_n} + i\frac{(\eta-1)\beta_n}{a_n}\right], \quad (8a)$$

$$R_{\delta\eta} = \frac{1}{|a_n|} [2(a_p + \beta_q) - (\delta a_n + \eta \beta_n) - \tau a_0 + (1-\tau)a_0 - \sigma \beta_0 + (1-\sigma)\beta_0 + |a_0|] \quad (8b)$$

$$R_{\delta\eta} = \frac{|a_0|}{|a_n| + (\delta-1)|a_n| + (\eta-1)|\beta_n| + 2(a_p + \beta_q) - (\delta a_n + \eta \beta_n) - \tau a_0 + (1-\tau)a_0 - \sigma \beta_0 + (1-\sigma)\beta_0} \quad (8c)$$

Proof: Consider the polynomial

$$F(z) = (1-z)P(z)$$

$$= -z^n \{(\alpha_n + i\beta_n)z + (\delta-1)\alpha_n + i(\eta-1)\beta_n\} + [(\delta a_n - a_{n-1})z^n + (a_{n-1} - a_{n-2})z^{n-1} + \dots + ((a_1 - \tau a_0) + (\tau a_0 - a_0)z + a_0) + i[(\eta \beta_n - \beta_{n-1})z^n + (\beta_{n-1} - \beta_{n-2})z^{n-1} + \dots + ((\beta_1 - \sigma \beta_0) + (\sigma \beta_0 - \beta_0))z + \beta_0]]$$

Now if $|z| > 1$, $\frac{1}{|z|^{n-j}} < 1$, $j = 0, 1, 2, \dots, n-1$

Therefore,

$$|F(z)| \geq |z|^n [|a_n z| + (\delta-1)\alpha_n + i(\eta-1)\beta_n] - \{2a_p + 2\beta_q - \delta a_n - \eta \beta_n - \tau a_0 + (a_0)(1-\tau) - \sigma \beta_0 + (\beta_0)(1-\sigma) + |a_0|\}]$$

> 0 , if

$$|z + \frac{(\delta-1)a_n}{a_n} + i\frac{(\eta-1)\beta_n}{a_n}| > \frac{1}{|a_n|} \{2(a_p + \beta_q) - (\delta a_n + \eta \beta_n) - \tau a_0 + (a_0)(1-\tau) - \sigma \beta_0 + (\beta_0)(1-\sigma) + |a_0|\}$$

This shows that the zeros of $F(z)$ having modulus greater than 1 lie in

$$\left\{ |z + \frac{(\delta-1)a_n}{a_n} + i\frac{(\eta-1)\beta_n}{a_n}| \leq \frac{1}{|a_n|} \{2(a_p + \beta_q) - (\delta a_n + \eta \beta_n) - \tau a_0 + (a_0)(1-\tau) - \sigma \beta_0 + (\beta_0)(1-\sigma) + |a_0|\} \right\} \quad (9)$$

Since all the zeros of $P(z)$ with modulus greater than 1 lie in the disc given by eq(9), it can be shown that $R_{\delta\eta} \geq 1$.

Consequently the zeros of $P(z)$ with modulus less than or equal to one are already contained in the disk $|z - z_{\delta\eta}| \leq R_{\delta\eta}$.

(10)

In order to prove the lower bound $R_{\delta\eta} \leq |z - z_{\delta\eta}|$ we first prove the following lemma.

Lemma: Let $P(z) = \sum_0^n a_j z^j$ be a polynomial of degree n with complex coefficients. Then for $|z| < 1$, we show that

$$|z| \leq \frac{|a_0|}{M_2} = \frac{|a_0|}{|a_n| + (\delta-1)|\alpha_n| + (\eta-1)|\beta_n| + 2(a_p + \beta_q) - (\delta\alpha_n + \eta\beta_n) - \tau\alpha_0 + (\alpha_0)(1-\tau) - \sigma\beta_0 + (\beta_0)(1-\sigma)}$$

Proof: Let $|z| < 1$.

Consider $F(z) = (1-z)P(z)$

$$= \chi(z) + a_0, \quad (11)$$

Where

$$\begin{aligned} \chi(z) &= \{(\alpha_n + i\beta_n)z + (\delta-1)\alpha_n + i(\eta-1)\beta_n\} + \{(\delta\alpha_n - \alpha_{n-1})z^n + (\alpha_{n-1} - \alpha_{n-2})z^{n-1} + \dots + ((\alpha_1 - \tau\alpha_0) + (\tau\alpha_0 - \alpha_0)z + i[(\eta\beta_n - \beta_{n-1})z^n + (\beta_{n-1} - \beta_{n-2})z^{n-1} + \dots + ((\beta_1 - \sigma\beta_0) + (\sigma\beta_0 - \beta_0))z]\} \\ &\quad \therefore |\chi(z)| = \{|\alpha_n + i\beta_n|z + |\delta-1|\alpha_n + |i(\eta-1)\beta_n|\} + \{|\delta\alpha_n - \alpha_{n-1}|z^n + |\alpha_{n-1} - \alpha_{n-2}|z^{n-1} + \dots + |((\alpha_1 - \tau\alpha_0) + (\tau\alpha_0 - \alpha_0)z + i[(\eta\beta_n - \beta_{n-1})z^n + (\beta_{n-1} - \beta_{n-2})z^{n-1} + \dots + ((\beta_1 - \sigma\beta_0) + (\sigma\beta_0 - \beta_0))z]|z\} \\ &\leq |a_n|z + |(\delta-1)\alpha_n| + |(\eta-1)\beta_n| + [M_1] \end{aligned}$$

Where

$$M_1 = 2(a_p + \beta_q) - (\delta\alpha_n + \eta\beta_n) - \tau\alpha_0 + (\alpha_0)(1-\tau) - \sigma\beta_0 + (\beta_0)(1-\sigma) \quad (12)$$

Since $\chi(0) = 0$, it follows by Schwarz lemma that

$$|\chi(z)| \leq M_1|z| \text{ for } |z| < 1$$

Therefore for $|z| < 1$,

$$\begin{aligned} |F(z)| &= |\chi(z) + a_0| \geq |a_0| - |\chi(z)| > 0, \text{ if} \\ |a_0| &> |z|[M_2], \end{aligned}$$

$$\begin{aligned} \text{where } M_2 &= |a_n| + (\delta-1)|\alpha_n| + (\eta-1)|\beta_n| + M_1 \\ &= |a_n| + (\delta-1)|\alpha_n| + (\eta-1)|\beta_n| + 2(a_p + \beta_q) - (\delta\alpha_n + \eta\beta_n) - \tau\alpha_0 + (\alpha_0)(1-\tau) - \sigma\beta_0 + (\beta_0)(1-\sigma) \end{aligned} \quad (13)$$

Thus, $|z| \leq \frac{|a_0|}{M_2}$

$$= \frac{|a_0|}{|a_n| + (\delta-1)|\alpha_n| + (\eta-1)|\beta_n| + 2(a_p + \beta_q) - (\delta\alpha_n + \eta\beta_n) - \tau\alpha_0 + (\alpha_0)(1-\tau) - \sigma\beta_0 + (\beta_0)(1-\sigma)} \quad (14)$$

Hence $P(z)$ does not vanish in $|z| < \frac{|a_0|}{M_2}$. It can be shown that $M_2 \leq |a_0|$ so that $|z| \leq 1$. Hence $P(z)$ has all its zeros in $\frac{|a_0|}{M_2} \leq |z|$. $\quad (15)$

Now we prove the second part of the main theorem (1)

Since $|z - z_{\delta\eta}| \geq |z| - |z_{\delta\eta}|$, (16)

then using eq(15) of above lemma in eq(16), we have

$$|z - z_{\delta\eta}| \geq |z| - |z_{\delta\eta}| \geq \frac{|a_0|}{M_2} - |z_{\delta\eta}|$$

This implies $\frac{|a_0|}{M_2} - |z_{\delta\eta}| \leq |z - z_{\delta\eta}|$

$$\frac{|a_0|}{M_2} - \left| \frac{(\delta-1)\alpha_n}{a_n} + i \frac{(\eta-1)\beta_n}{a_n} \right| \leq |z - z_{\delta\eta}| \quad (17)$$

From eq(17) we obtain $R^{\delta\eta} \leq |z - z_{\delta\eta}|$,

where $R^{\delta\eta}$ is given in eq 8(c)

On combining eq(10) and eq(18) the above theorem is completely proved.

Conclusion

We get (i) if $\tau = 1, \sigma \neq 1$, then all the zeros of $P(z)$ lie in the disk

$$R^{22} \leq |z - z_{\delta\eta}| \leq R_{11}, \quad (19)$$

where,

$$R_{11} = \frac{1}{|a_n|} [2(\alpha_p + \beta_q) - (\delta\alpha_n + \eta\beta_n) - \alpha_0 - \sigma\beta_0 + (1-\sigma)\beta_0 + |a_0|] \quad (19a)$$

$$R^{22} = \frac{|a_0|}{|a_n| + (\delta-1)|\alpha_n| + (\eta-1)|\beta_n| + 2(a_p + \beta_q) - (\delta\alpha_n + \eta\beta_n) - \alpha_0 - \sigma\beta_0 + (1-\sigma)\beta_0}$$

$$-\frac{1}{|a_n|}[(\delta-1)^2\alpha_n^2+(\eta-1)^2\beta_n^2]^{1/2} \quad (19b)$$

and

(ii) if $\sigma = 1, \tau \neq 1$, then all the zeros of $P(z)$ lie in the disk

$$R^{44} \leq |z - z_{\delta\eta}| \leq R_{33}, \quad (20)$$

where,

$$R_{33} = \frac{1}{|a_n|}[2(\alpha_p + \beta_q) - (\delta\alpha_n + \eta\beta_n) - \alpha_0 - \sigma\beta_0 + (1-\sigma)\beta_0 + |a_0|] \quad (20a)$$

$$R^{44} = \frac{|a_0|}{|a_n| + (\delta-1)|\alpha_n| + (\eta-1)|\beta_n| + 2(\alpha_p + \beta_q) - (\delta\alpha_n + \eta\beta_n) - \alpha_0 - \sigma\beta_0 + (1-\sigma)\beta_0} \quad (20b)$$

$$-\frac{1}{|a_n|}[(\delta-1)^2\alpha_n^2 + (\eta-1)^2\beta_n^2]^{1/2} \quad (20b)$$

and $z_{\delta\eta}$ is given by eq(8a)

(iii) Further we note with regard to the upper bound of the Theorem 1 given as $|z - z_{\delta\eta}| \leq R_{\delta\eta}$,

where

$$z_{\delta\eta} = -\left[\frac{(\delta-1)\alpha_n}{a_n} + i\frac{(\eta-1)\beta_n}{a_n}\right] = A + iB \text{ where } A = -\frac{(\delta-1)\alpha_n}{a_n} \text{ and } B = -\frac{(\eta-1)\beta_n}{a_n}$$

and

$$R_{\delta\eta} = \frac{1}{|a_n|}[2(\alpha_p + \beta_q) - (\delta\alpha_n + \eta\beta_n) - \tau\alpha_0 + (1-\tau)\alpha_0 - \sigma\beta_0 + (1-\sigma)\beta_0 + |a_0|]$$

and that if we transfer the centre of the above disc at the origin so that equation (9) can be written as

$$\begin{aligned} |z| &= |\bar{z} - z_{\delta\eta}| + z_{\delta\eta} \leq |z - z_{\delta\eta}| + |z_{\delta\eta}| \\ &\leq R_{\delta\eta} + |z_{\delta\eta}| \\ &\leq \frac{1}{|a_n|} \{2(\alpha_p + \beta_q) - (\delta\alpha_n + \eta\beta_n) - \tau\alpha_0 + (\alpha_0)(1 - \tau) - \sigma\beta_0 + (\beta_0)(1 - \sigma) + |a_0|\} + \sqrt{A^2 + B^2} \quad (21) \end{aligned}$$

Comparing this bound with upper bound of Theorem E given by:

$$\begin{aligned} |z| &\leq R_{11} = \frac{M_2}{|a_n|} \\ &\leq \frac{1}{|a_n|} \{ |(\lambda - 1)\alpha_n| + |(\mu - 1)\beta_n| + 2(\alpha_p + \beta_q) - (\lambda\alpha_n + \mu\beta_n) - (\alpha_0 + \beta_0) + |a_0| \} \\ &\leq \frac{1}{|a_n|} [2(\alpha_p + \beta_q) - (\lambda\alpha_n + \mu\beta_n) - (\alpha_0 + \beta_0) + |a_0|] + |A| + |B| \quad (20) \end{aligned}$$

We here find that the present bound given by (21) corresponding to $\tau = 1 = \sigma$ is sharper than eq (20) of Choo [5], in view of $\sqrt{A^2 + B^2} < A + B$.

References

1. Aziz, A. and Zargar, B.A., 1996, *Some extensions of Enestrom - Kakeya theorem*; Glasnik mathematicki , 31, 239-244.
2. Aziz, A. and Mohammad, Q.G., 1980, *On zeros of certain class of polynomials and related analytic function*, J. Math Anal. Appl., 75, 495-502.
3. Aziz, A. and Shah,W. M., 1998, *On the zeros of polynomials and related analytic functions*; Glasnik Mat., 33(53), 173-184.
4. Aziz, A. and Shah, W.M., 1999, *on the location of zeros of polynomials and related analytic functions*, Nonlinear Studies, 6(1), 91-101.
5. Choo, Y., 2011, *Some Results on the zeros of polynomials and related analytic functions*, Int. Journal of Math. Analysis, 5(35), 1741-1760.
6. Gulzar, M.H., 2011, *On the zeros of a polynomial with restricted coefficients*, Research Journal of Pure Algebra, 1(9), 205-208.
7. Dewan, K.K. and Govil, N.K., 1984, *On the Enestrom - Kakeya theorem*, J. Approx. Theory, 42, 239-246.
8. Dewan, K.K. and Bidkam, M., 1993, *On the Enestrom - Kakeya theorem*, J.Math.Appl., 180, 29-36.
9. Govil, N.K. and Rehman, Q.I., 1986, *On the Enestrom - Kakeya theorem*, Toku Math J., 20, 126-136.
10. Govil, N.K. and McTune, G.N., 2002, *some extensions of Enestrom - Kakeya theorem*, International J.Applied mathematics, 11(3), 245-253.
11. Joyal, A., Labelle, G. and Rehman Q.I., 1967, *on the location of zeros of polynomial*, Canad. Math. Bull, 10, 53-63.
12. Marden.M, 1966, *Geometry of polynomials*, Math. Surveys.No. 3, Amer. Math. Soc. (R.I.: Providence.).
13. Raina B.L., et. al., 2012, *Some Generalization of Enestrom Kakeya Theorem*, Int. Journal of Math Analysis, 2(10), 305-311.
14. Rather, N.A. and Ahmed, S.S., 2007, *A remark on the generalization of Enestrom - Kakeya theorem*, Journal of analysis and computation, 3(1), 33-41.
15. Shah, W. M. and Liman, A., 2007, *On Enestrom Kakeya theorem and related analytic functions*, Proc. Indian Acad. Sci. (Math. Sci.), 117(3), 359-370.