

Some Idempotents in Abelian Group Algebra

Dalip Singh^{1*}, Jagbir Singh^{2*}, Pankaj Arora^{3*}

^{1,2,3} Department of Mathematics, M.D. University, Rohtak – 124001, INDIA.

*Corresponding Address:

¹dsmdur@gmail.com, ²ahlawatjagbir@gmail.com, ³pankajarora1242@yahoo.com

Research Article

Abstract: Expressions for pairwise orthogonal idempotents in FG , the semi simple group algebra of the abelian group G of order p^n and p^nq over the finite field F of prime power order $p^n\lambda+1$ and $p^nq\lambda+1$ respectively, are obtained.

Keywords : Group algebra, finite field, orthogonal idempotents.

Introduction

Let $F = GF(q)$ be a finite field of prime power order q and let n be a positive integer which is relatively prime to q .

The cyclic codes of length n over F can be viewed as ideals in either $\frac{F[x]}{\langle x^n - 1 \rangle}$ or as ideals in the group algebra FC_n ,

where C_n denotes a cyclic group of order n . If G is an abelian group of order n , then the ideals of the group algebra FG are called abelian codes. Milies and Ferraz [6] have found some minimal abelian codes of length p^n and $2p^n$ extending the results of Arora and Pruthi ([1],[8]). In this paper, we describe method to find pair wise orthogonal idempotents in group algebra FG , where G is an abelian group of order p^n and p^nq . In Section 2, we give expression for these idempotents in FG , where G is an abelian group of order p^n , where p is an odd prime and F is a field of prime power order q with $q = p^n\lambda+1$. In section 3, we discuss the case when G is an abelian group of order p^nq , p and q are odd primes, and F is a field of prime power order q with $q = p^nq\lambda+1$. In section 4, we give an example for an abelian group of order 9.

G is Abelian group of order p^n , p is an odd prime

If $G = \langle g \rangle = C_n$ is a finite cyclic group of order n , F is a field of order q with $(q, n) = 1$ and $q = n\lambda + 1$ for some $\lambda \geq 0$.

Then, FC_n has n primitive idempotents given by

$$e_i = \frac{1}{n} \sum_{j=0}^{n-1} \alpha^{ij} g^j, \quad 0 \leq i \leq n-1,$$

where α is n^{th} root of unity in F [8].

Theorem

Let G is an abelian group of order p^n , where p is an odd prime and H is a subgroup of G of order p^m such that G/H is cyclic, say $\langle aH \rangle$. F is a field of order $p^n\lambda+1$ for some $\lambda > 0$. Then,

$$S_i = \left(\frac{1}{p^n} \sum_{h \in H} h \right) \left(\sum_{j=0}^{p^{n-m}-1} \alpha^{ij} a^j \right),$$

$0 \leq i \leq p^{n-m} - 1$, Where α is $(p^{n-m})^{\text{th}}$ root of unity in F , are orthogonal idempotents in FG .

Proof Let G be an abelian group of order p^n and H be a subgroup of G of order p^m such that G/H is cyclic, say $\langle aH \rangle$.

Here, $|G/H| = p^{n-m} = t$ (say).

Also, $a^t \in H$. Consider a cyclic group G_1 of order t and let $G_1 = \langle b \rangle$. Then, $G_1 \cong G/H$. The orthogonal idempotents of FG_1 are

$$e_i = \frac{1}{t} \sum_{j=0}^{t-1} \alpha^{ij} b^j, \quad 0 \leq i \leq t-1,$$

where α is t^{th} root of unity in F , that is, α is a solution of $x^t = 1$.

Now consider the elements of FG given by

$$\xi_i = \frac{1}{t} \sum_{j=0}^{t-1} \alpha^{ij} a^j, \quad 0 \leq i \leq t-1.$$

We assert that

$$S_i = \left(\frac{1}{|H|} \sum_{h \in H} h \right) \xi_i$$

for $0 \leq i \leq t-1$, are orthogonal idempotents in FG .

For $0 \leq i \leq t-1$, we have

$$\begin{aligned} S_i^2 &= S_i S_i \\ &= \left(\left(\frac{1}{p^n} \sum_{h \in H} h \right) \left(\sum_{j=0}^{t-1} \alpha^{ij} a^j \right) \right) \left(\left(\frac{1}{p^n} \sum_{h \in H} h \right) \left(\sum_{j=0}^{t-1} \alpha^{ij} a^j \right) \right) \\ &= \frac{1}{p^{2n-m}} \left\{ t \left(\sum_{h \in H} h + \alpha^i a \sum_{h \in H} h + \alpha^{2i} a^2 \sum_{h \in H} h + \dots \right. \right. \\ &\quad \left. \left. + \alpha^{(t-2)i} a^{t-2} \sum_{h \in H} h + \alpha^{(t-1)i} a^{t-1} \sum_{h \in H} h \right) \right\} \\ &= \left(\frac{1}{p^n} \sum_{h \in H} h \right) \left(\sum_{j=0}^{t-1} \alpha^{ij} a^j \right) \\ &= S_i \end{aligned}$$

Also for i, j such that $i \neq j, i > j$, we have

$$\begin{aligned} S_i S_j &= \left(\left(\frac{1}{p^n} \sum_{h \in H} h \right) \left(\sum_{k=0}^{t-1} \alpha^{ik} a^k \right) \right) \left(\left(\frac{1}{p^n} \sum_{h \in H} h \right) \left(\sum_{l=0}^{t-1} \alpha^{jl} a^l \right) \right) \\ &= \frac{1}{p^{2n-m}} \left\{ \sum_{h \in H} h + \alpha^i \sum_{h \in H} h a + \alpha^{2i} \sum_{h \in H} h a^2 + \dots + \alpha^{(t-1)i} \sum_{h \in H} h a^{t-1} \right. \\ &\quad \left. + \alpha^j \sum_{h \in H} h a + \alpha^{i+j} \sum_{h \in H} h a^2 + \dots + \alpha^{(t-1)i+j} \sum_{h \in H} h a^t \right. \\ &\quad \left. + \alpha^{2j} \sum_{h \in H} h a^2 + \alpha^{i+2j} \sum_{h \in H} h a^3 + \dots + \alpha^{(t-1)i+2j} \sum_{h \in H} h a^{t+1} + \dots \right. \\ &\quad \left. + \alpha^{(t-1)j} \sum_{h \in H} h a^{t-1} + \alpha^{i+(t-1)j} \sum_{h \in H} h a^t + \dots + \alpha^{(t-1)i+(t-1)j} \sum_{h \in H} h a^{2t-2} \right\} \end{aligned}$$

$$\sum_{g \in H} g a^t = \sum_{g \in H} g \quad \text{and} \quad \sum_{g \in H} g a^{t+i} = \sum_{g \in H} g a^i \quad \text{for all } i \geq 0. \quad \text{Using this coefficient of } \frac{1}{p^{2n-m}} \sum_{g \in H} g a^k \text{ in the above expression is}$$

$$\left\{ \alpha^{kj} + \alpha^{(k-1)j+i} + \alpha^{(k-2)j+2i} + \dots + \alpha^{ki} \right\} + \left\{ \alpha^{(k+1)i+(t-1)j} + \alpha^{(k+2)i+(t-2)j} + \dots + \alpha^{(t-1)i+(k+1)j} \right\} = \alpha^{kj} \left\{ \frac{\alpha^{(k+1)(i-j)} - 1}{\alpha^{(i-j)} - 1} \right\} + \alpha^{(k+1)i+(t-1)j} \left\{ \frac{\alpha^{(t-k-1)(i-j)} - 1}{\alpha^{(i-j)} - 1} \right\} = 0. \text{ Thus, } \{S_i\}$$

$0 \leq i \leq t-1$, are orthogonalidempotents in FG .

Theorem

The complete set of orthogonalidempotents in FG , where F is a field of order q with $q = p^n \lambda + 1$ for some $\lambda > 0$ and G is an abelian group of order p^n having a sequence of subgroups $G = G_0 \supset G_1 \supset G_2 \supset \dots \supset G_{n-1} \supset G_n = \langle e \rangle$ such that $|G_i/G_{i+1}| = p$ ($0 \leq i \leq n-1$), is given by $\{e_{0,i_0} e_{1,i_1} \dots e_{n-1,i_{n-1}}\}$, ($0 \leq i_j \leq p$) ($0 \leq j \leq n-1$) where

$G_j/G_{j+1} = \langle a_j G_{j+1} \rangle$ and

$$e_{j,i_j} = \frac{1}{p^{n-j}} \left(\sum_{g_{j+1} \in G_{j+1}} g_{j+1} \right) \left(\sum_{k=0}^{p-1} \alpha_j^{i_j k} a_j^k \right), \quad \alpha_j \text{ is } p^{\text{th}} \text{ root of unity in } F, \text{ are orthogonalidempotents in } FG_j \text{ for } 0 \leq j \leq n-1.$$

Proof

Let G be an abelian group of order p^n and G_1 be the subgroup of order p^{n-1} . Then, $|G/G_1| = p$ and so G/G_1 is cyclic. Let $G/G_1 = \langle a_0 G_1 \rangle$. Then,

$$e_{0,i_0} = \frac{1}{p^{n-1}} \left(\sum_{g_1 \in G_1} g_1 \right) \left(\frac{1}{p} \sum_{j=0}^{p-1} \alpha_0^{i_0 j} a_0^j \right) \\ = \frac{1}{p^n} \left(\sum_{g_1 \in G_1} g_1 \right) \left(\sum_{j=0}^{p-1} \alpha_0^{i_0 j} a_0^j \right),$$

for $0 \leq i_0 \leq p-1$, are orthogonalidempotents in FG , α_0 is p^{th} root of unity in F .

Now, let G_2 be the subgroup of G_1 of order p^{n-2} . Then, $|G_1/G_2| = p$ and so G_1/G_2 is cyclic. Let $G_1/G_2 = \langle a_1 G_2 \rangle$. Then,

$$e_{1,i_1} = \frac{1}{p^{n-2}} \left(\sum_{g_2 \in G_2} g_2 \right) \left(\frac{1}{p} \sum_{j=0}^{p-1} \alpha_1^{i_1 j} a_1^j \right) \\ = \frac{1}{p^{n-1}} \left(\sum_{g_2 \in G_2} g_2 \right) \left(\sum_{j=0}^{p-1} \alpha_1^{i_1 j} a_1^j \right),$$

for $0 \leq i_1 \leq p-1$, are orthogonalidempotents in FG_1 , α_1 is p^{th} root of unity in F .

Continuing in this way, we will obtain a subgroup G_{n-2} of order p^2 and its subgroup G_{n-1} of order p . Then,

$$|G_{n-1}/G_{n-2}| = p \text{ and so } G_{n-2}/G_{n-1} \text{ is cyclic. Let } G_{n-2}/G_{n-1} = \langle a_{n-2} G_{n-1} \rangle. \text{ Then,}$$

$$e_{n-2,i_{n-2}} = \frac{1}{p} \left(\sum_{g_{n-1} \in G_{n-1}} g_{n-1} \right) \left(\frac{1}{p} \sum_{j=0}^{p-1} \alpha_{n-2}^{i_{n-2} j} a_{n-2}^j \right) \\ = \frac{1}{p^2} \left(\sum_{g_{n-1} \in G_{n-1}} g_{n-1} \right) \left(\sum_{j=0}^{p-1} \alpha_{n-2}^{i_{n-2} j} a_{n-2}^j \right),$$

for $0 \leq i_{n-2} \leq p-1$, are orthogonalidempotents in FG_{n-2} , α_{n-2} is p^{th} root of unity in F .

Also, $|G_{n-1}/G_n| = p$, so G_{n-1} is cyclic. Let $G_{n-1} = \langle a_{n-1} \rangle$. Then,

$$e_{n-1,i_{n-1}} = \frac{1}{p} \left(\sum_{j=0}^{p-1} \alpha_{n-1}^{i_{n-2}j} a_{n-1}^j \right),$$

for $0 \leq i_{n-1} \leq p-1$, are orthogonalidempotents in FG_{n-1} , α_{n-1} is p^{th} root of unity in F .

Now, the complete set of orthogonalidempotents of FG is given by

$$e_i = e_{i_{n-1}p^{n-1} + i_{n-2}p^{n-2} + \dots + i_1p + i_0} = e_{0,i_0} \cdot e_{1,i_1} \dots e_{n-1,i_{n-1}},$$

where $i = i_{n-1}p^{n-1} + i_{n-2}p^{n-2} + i_{n-2}p^{n-2} + \dots + i_1p + i_0$, as

$$e_i^2 = \left(e_{i_{n-1}p^{n-1} + i_{n-2}p^{n-2} + \dots + i_1p + i_0} \right)^2$$

$$= \left(e_{0,i_0} \cdot e_{1,i_1} \dots e_{n-1,i_{n-1}} \right)^2$$

$$= e_{0,i_0} \cdot e_{1,i_1} \dots e_{n-1,i_{n-1}}$$

$$= e_i$$

For $i \neq j$, the representation of i and j are as follows:

$$i = i_{n-1}p^{n-1} + i_{n-2}p^{n-2} + i_{n-2}p^{n-2} + \dots + i_1p + i_0,$$

$$j = j_{n-1}p^{n-1} + j_{n-2}p^{n-2} + j_{n-2}p^{n-2} + \dots + j_1p + j_0,$$

and they must differ at at least one indices, say k^{th} , that is, $i_k \neq j_k$, then

$$e_{k,i_k} \cdot e_{k,j_k} = 0$$

Thus $e_i \cdot e_j = 0$.

Theorem

The complete set of orthogonalidempotents in FG where F is a field of order q with $q = p^n \lambda + 1$ for some $\lambda > 0$, G is an abelian group of order p^n having a sequence of subgroups $G = G_0 \supset G_1 \supset G_2 \supset \dots \supset G_s = \langle e \rangle$ with the property that G_{i+1} is subgroup of G of smallest order p^{n_i+1} (say), such that G_i/G_{i+1} is cyclic, is given by

$$\{e_{0,i_0} \cdot e_{1,i_1} \dots e_{s-1,i_{s-1}}\}, \left(0 \leq i_j \leq \frac{p^{n_j}}{p^{n_{j+1}}} - 1 \right) (0 \leq j \leq s-1) \text{ where } G_j/G_{j+1} = \langle a_j G_{j+1} \rangle \text{ and}$$

$$e_{j,i_j} = \left(\frac{1}{p^{n_j}} \sum_{g_{j+1} \in G_{j+1}} g_{j+1} \right) \left(\sum_{k=0}^{p^{n_j-n_{j+1}}-1} \alpha_j^{i_j k} a_j^k \right),$$

α_j is $(p^{n_j-n_{j+1}})^{\text{th}}$ root of unity in F , are the orthogonalidempotents in FG_j for $0 \leq j \leq s-1$.

If G is Abeliangroup of order $p^n q$, p and q are distinct odd primes

Theorem

Orthogonalidempotents in group algebra FG , where G is an abelian group of order $p^n q$, (p is an odd prime and q is any prime) and H is a subgroup of G of order $p^m q$ such that $G/H = \langle aH \rangle$ and F is a field of order $p^n q \lambda + 1$ for some $\lambda > 0$, are given by

$$S_i = \left(\frac{1}{p^n q} \sum_{h \in H} h \right) \left(\sum_{j=0}^{p^{n-m}-1} \alpha^{ij} a^j \right), \quad 0 \leq i \leq p^{n-m}-1,$$

where α is $(p^{n-m})^{th}$ root of unity in F .

Theorem

If F is a field of order r with $r = p^n q \lambda + 1$ for some $\lambda > 0$ and G is an abelian group of order $p^n q$ where p is an odd prime and q is any prime and it has a sequence of subgroups

$G = G_0 \supset G_1 \supset G_2 \supset \dots \supset G_{n-1} \supset G_n = \langle e \rangle$ Such that $|G_i / G_{i+1}| = p$ ($0 \leq i \leq n-1$). Then, the complete set of orthogonal idempotents in FG is

$$\{e_{0,i_0} e_{1,i_1} \dots e_{n-1,i_{n-1}}\}, \quad (0 \leq i_j \leq p) \quad (0 \leq j \leq n-1)$$

where $G_j / G_{j+1} = \langle a_j G_{j+1} \rangle$ and

$$e_{j,i_j} = \frac{1}{p^{n-j} q} \left(\sum_{g_{j+1} \in G_{j+1}} g_{j+1} \right) \left(\sum_{k=0}^{p-1} \alpha^{i_j k} a_j^k \right),$$

α is p^{th} root of unity in F , are the orthogonal idempotents in FG_j for $0 \leq j \leq n-1$,

Theorem

Let G be an abelian group of order $p^n q$ where p is an odd prime and q is any prime and F be a field of order r with $r = p^n q \lambda + 1$ for some $\lambda > 0$. Then, by considering a sequence of subgroups of G

$$G = G_0 \supset G_1 \supset G_2 \supset \dots \supset G_s = \langle e \rangle$$

with the property that G_{i+1} is subgroup of G of smallest order $p^{n_i+1} q$ (say), such that G_i / G_{i+1} is cyclic. Then, the complete set of orthogonal idempotents in FG is given as

$$\{e_{0,i_0} e_{1,i_1} \dots e_{s-1,i_{s-1}}\}, \quad \left(0 \leq i_j \leq \frac{p^{n_j}}{p^{n_{j+1}}} - 1 \right) \quad (0 \leq j \leq s-1) \text{ where } G_j / G_{j+1} = \langle a_j G_{j+1} \rangle \text{ and}$$

$$e_{j,i_j} = \left(\frac{1}{p^{n_j} q} \sum_{g_{j+1} \in G_{j+1}} g_{j+1} \right) \left(\sum_{k=0}^{p^{n_j-n_{j+1}}-1} \alpha_j^{i_j k} a_j^k \right), \quad \alpha_j \text{ is } (p^{n_j-n_{j+1}})^{th} \text{ root of unity in } F, \text{ are the orthogonal idempotents}$$

in FG_j for $0 \leq j \leq s-1$.

Example

Example Consider an abelian group G of order 9. Then, G will have a subgroup H of order 3 and $|G/H| = 3$. Let $G/H = \langle aH \rangle$. Then,

$$e_{0,0} = \frac{1}{9} \left(\sum_{h \in H} h \right) (1 + a + a^2)$$

$$e_{0,1} = \frac{1}{9} \left(\sum_{h \in H} h \right) (1 + \alpha a + \alpha^2 a^2)$$

$$e_{0,2} = \frac{1}{9} \left(\sum_{h \in H} h \right) (1 + \alpha^2 a + \alpha a^2)$$

are orthogonal idempotents in FG , where α is solution of $x^3 = 1$ in F . Also $|H| = 3$. Let $H = \langle b \rangle$. Then, orthogonal idempotents in FH are

$$e_{1,0} = \frac{1}{3}(1 + b + b^2)$$

$$e_{1,1} = \frac{1}{3}(1 + \beta b + \beta^2 b^2)$$

$$e_{1,2} = \frac{1}{3}(1 + \beta^2 b + \beta b^2)$$

$$e_0 = e_{0,0}e_{1,0}$$

Then, the complete set of orthogonal idempotents of FG is given by

$$= \frac{1}{27} \left(\sum_{h \in H} h \right) \left(1 + a + a^2 + b + ab + a^2b + b^2 + ab^2 + a^2b^2 \right)$$

$$e_1 = e_{0,1}e_{1,0}$$

$$e_2 = e_{0,2}e_{1,0}$$

$$e_3 = e_{0,0}e_{1,1}$$

$$e_4 = e_{0,1}e_{1,1}$$

$$e_5 = e_{0,2}e_{1,1}$$

$$e_6 = e_{0,0}e_{1,2}$$

$$e_7 = e_{0,1}e_{1,2}$$

$$e_8 = e_{0,2}e_{1,2}$$

References

1. Arora, S.K., Pruthi, M.: Minimal Cyclic Codes of Length $2p^n$, Finite Fields Appl., 5, 177-187 (1999)
2. Berman, S. D.: On the Theory of Group Codes, Kibernetika, 3, No. 1, 31-39 (1967)
3. Berman, S. D.: Semisimple cyclic and abelian code, II, Cybernetics, 3, 17-23 (1967)
4. Blake, I. F., Mullin, R.C.: The Mathematical Theory of Coding, Academic Press, New York (1975)
5. Burrow, M.: Representation Theory of Finite Groups, Academic Press, New York (1965)
6. Ferraz, R. A., Milies, C.P.: Idempotents in group algebras and minimal abelian codes, Finite Fields Appl., 13, 382-393 (2007)
7. Perlis, S., Walker, G.: Abelian group algebras, Trans. Amer. Math. Soc. 68, 420-426 (1950)
8. Pruthi, M., Arora, S.K.: Minimal Codes of Prime-Power Length, Finite Fields Appl., 3, 99-113 (1997)