Rings with (x, R, x) in the Left Nucleus

K. Jayalakshmi ${ }^{1^{*}}$, S. Madhavi Latha ${ }^{2 * *}$
${ }^{1}$ Department of Mathematics, JNTUA College of Engineering, JNTUA University, Ananthapuramu, Andhra Pradesh, INDIA.
${ }^{2}$ Department of Sciences and Humanities, C. V. Raman Institute of Technology, Tadipatri, Ananthapuramu, Andhra Pradesh, INDIA. Email: ${ }^{*}$ kjay.maths@intua.ac.in, ${ }^{* *}$ madhavilathashettipalli@gmail.com

Abstract If N_{l} and N_{r} be the Lie ideals of a nonassociative ring R, then $\left[N_{l}, R\right] \subseteq N_{l}$ and $\left[N_{r}, R\right] \subseteq N_{r}$ Also if (x, R, x) is in the left nucleus then $N_{l}[R, R] \subseteq N_{l}$. If R is a prime ring with $N_{l} \neq 0$, and (x, R, x) in the left nucleus then R is either associative or commutative.
Key Word: Nonassociative ring, Left nucleus, Right nucleus, Lie ideals, Associator ideal.
*Address for Correspondence:
Dr. K. Jayalakshmi, Department of Mathematics, JNTUA College of Engineering, JNTUA University, Ananthapuramu, Andhra Pradesh, INDIA.
Email: kjay.maths@jntua.ac.in
Received Date: 28/07/2014 Accepted Date: 05/08/2014

Access this article online	
Quick Response Code:	Website:

INTRODUCTION

Kleinfeld [1] studied nonassociative rings with (x, R, x) and $[R, R]$ in the left nucleus. Yen [2] considered the rings with the weaker hypothesis that is, rings with (x, R, x) and $\left[N_{l}, R\right]$ in the left nucleus and proved that if R is a semiprime ring, then $N_{r}=N_{l}$. He also proved that if R is a prime ring with $N_{l} \neq 0$ satisfying one additional condition $N_{l}[R, R] \subseteq N_{l}$, then R is either associative or commutative. In this paper by considering N_{l} and N_{r} as the Lie ideals of a ring R, we present some properties of R with (x, R, x) in the left nucleus. Using these properties, we show that $N_{l}[R, R] \subseteq N_{l}$. Also we prove that, if R is a prime ring with $N_{l} \neq 0$, then R is either associative or commutative.

PRILIMENARIES

In a nonassociative ring R we define an associator as $(x, y, z)=(x y) z-x(y z)$ and the commutator as $[x, y]=x y-y x$ for all $x, y, z \in R$. To make the notation more convenient we often use '. ' to indicate multiplication as well as juxtaposition. In products, juxtaposition takes precedence, i, e, $x y \cdot z \equiv(x y) z$. The nucleus of a ring R is defined as $N=\{n \in R /(n, R$, $R)=(R, n, R)=(R, R, n)=0\}$, the right nucleus as $N_{r}=\{n \in R /(R, R, n)=0\}$ and the left nucleus as $N_{l}=\{n \in R /(n, R$, $R)=0\}$. A ring R is said to be prime if whenever A and B are ideals of R such that $A B=0$, then either $A=0$ or $B=0$ and is said to be semiprime if for any ideal A of $R, A^{2}=0$ implies $A=0$. These rings are also refered to as rings free from trivial ideals. And a ring is said to be simple if whenever A is an ideal of R, then either $A=R$ or $A=0$.
Let R be a nonassociative ring satisfying $(x, R, x) \subseteq N_{l}$, that is,
$(x, y, z)+(z, y, x) \in N_{l}$.
Let N_{l} and N_{r} be the Lie ideals of R. Then
$\left[N_{l}, R\right] \subseteq N_{l}$
and $\left[N_{r}, R\right] \subseteq N_{r}$.

We use Teichmuller identity which is valid in any arbitrary ring.
$(w x, y, z)-(w, x y, z)+(w, x, y z)-w(x, y, z)-(w, x, y) z=0$,
for all, $w, x, y, z \in R$.
Then with $w=n \in N_{l}$ in (3), we obtain
$(n x, y, z)=n(x, y, z)$.
Since N_{l} is the Lie ideal from (2), we obtain
$(n x, y, z)=n(x, y, z)=(x n, y, z)$,
for all, $n \in N_{l}$.
Thus N_{l} is the associative subring of R.

MAIN SECTION

Lemma 3.1: Let $T=\left\{t \in N_{l}: t(R, R, R)=0\right\}$, then T is an ideal of R.
Proof: In (4) substituting $n=t$, we obtain
$(t x, y, z)=t(x, y, z)=(x t, y, z)=0$.
Thus $t R \subset N_{l}$ and $R t \subset N_{l}$.
Also, $t w \cdot(x, y, z)=t \cdot w(x, y, z)$.
Multiplying (3) with t on the left side, we obtain
$t \cdot w(x, y, z)=-t \cdot(w, x, y) z$
$=-t(w, x, y) \cdot z$
$=0$.
Hence $t w \cdot(x, y, z)=0$. Thus $T R \subseteq T$.
Now using $T R \subseteq T$, (2), (4), $R T \subset N_{l}$ and (1), we obtain
$w t \cdot(x, y, z)=[w, t](x, y, z)$
$=([w, t] x, y, z)$
$=((w t) x, y, z)-((t w) x, y, z)$
$=([w t, x], y, z)+(x(w t), y, z)-(t(w x), y, z)$
$=([w t, x], y, z)+(x(w t), y, z)$
$=-((x, w, t), y, z)+((x w) t, y, z)$
$=-((x, w, t)+(t, w, x), y, z)$
$=0$.
Hence $R T \subseteq T$. Thus T is an ideal of R. From the definition of T, we obtain $T(R, R, R)=0$.
This completes the proof of the Lemma.
Let A be the associator ideal of R. We assume that R satisfies (1) and also R is semiprime. Using Lemma 3.1 and equation (3), we obtain $T \cdot A=0$ and hence $(T \cap A)^{2}=0$. Thus we have $T \cap A=0$ and $A \cdot T=0$.
From Lemma 3.1 and equation (3), we obtain
$(R, T, R)=0$.
Lemma 3.2: Let R be a nonassociative ring satisfying $(x, y, z)+(z, y, x) \in N_{l}$. Then $\left(R, R, N_{l}\right)=0$.
Proof: Let $n \in N_{l}$, then from (1), we obtain
$(x, y, n)=(x, y, n)+(n, y, x) \in N_{l}$.
Also from (3), we obtain
$z(x, y, n)=(z x, y, n)-(z, x y, n)+(z, x, y n)-(z, x, y) n$.
Hence using these, (4) and (1), we obtain
$(x, y, n)(z, r, s)=(z(x, y, n), r, s)$

$$
\begin{aligned}
& =((z x, y, n), r, s)-((z, x y, n), r, s)+((z, x, y n), r, s)-((z, x, y) n, r, s) \\
& =((z, x, y n), r, s)-((z, x, y) n, r, s) \\
& =-((y n, x, z), r, s)-(n(z, x, y), r, s) \\
& =-(n(y, x, z), r, s)-n((z, x, y), r, s) \\
& =-n((y, x, z), r, s)-n((z, x, y), r, s) \\
& =-n((y, x, z)+(z, x, y), r, s) \\
& =0 .
\end{aligned}
$$

Hence $(x, y, n) \in T$.

Since (x, y, n) is also an associator, it is also in A.
Thus from (5), we obtain $(x, y, n)=0$.
Hence $\left(R, R, N_{l}\right)=0$.
From Lemma 3.2, we obtain $N_{l} \subseteq N_{r}$.
Let $n \in N_{r}$. Then with $z=n$ in (3), we obtain
$(w, x, y n)=(w, x, y) n$. Thus N_{r} is an associative subring of R.
Now since N_{r} is the Lie ideal of R, we obtain
$(w, x, y n)=(w, x, y) n=(w, x, n y)$,
for all $n \in N_{r}$ and $w, x, y \in R$.
Lemma 3.3: Let N_{r} be the Lie ideal of R and let
$S=\left\{n \in N_{r}:(R, R, R) n=0\right\}$, then S is an ideal of $R,(R, R, R) S=0, S \cap A=0, S \cdot A=A \cdot S=0$ and $T \subseteq S$.
Proof: Using (1), (3), (5), (7) and (8) and the proof of Lemma 3.1, this Lemma is proved.
Lemma 3.4: If N_{r} and N_{l} are the Lie ideals of R, then $N_{r}=N_{l}$ and $S=T$.
Proof: Let us assume that $(R, R, n)=0$, then from (1), we obtain $(n, x, y)=(n, x, y)+(y, x, n) \in N_{l}$.
Now using (1), (7), (8) and $\left[N_{r}, R\right] \subseteq N_{r}$, and since N_{r} is an associative subring of R, we obtain
$(n x, y, z)-n(x, y, z)=\{(n x, y, z)+(z, y, n x)\}-n\{(x, y, z)+(z, y, x)\}+[n,(z, y, x)] \in N_{r}$.
From the above equation and $(n, R, R) \subseteq N_{l} \subseteq N_{r}$ and with $w=n$ in (3), we obtain
$(n, x, y) z=\{(n x, y, z)-n(x, y, z)\}-(n, x y, z)+(n, x, y z) \in N_{r}$.
Hence using this and (8), we obtain $(s, r, z)(n, x, y)=(s, r,(n, x, y) z)=0$, which shows that $(n, x, y) \in S \cap A$ and thus from Lemma 3.3, we have $(n, x, y)=0$.
Hence $N_{r} \subseteq N_{l}$. Thus from (7), we have $N_{r}=N_{l}$. From Lemma 3.3 again, $S \cdot A=0$ and so $S=T$. This completes the proof of the Lemma.

Theorem 3.1: If R is a semiprime ring satisfying $(x, y, z)+(z, y, x) \in N_{l}$, where N_{l} is the Lie ideal of R, then T is an ideal of R and $\left(N_{l}, R, R\right)=(R, T, R)=\left(R, R, N_{l}\right)=0$. Also, if $\left[N_{r}, R\right] \subseteq N_{r}$, then $N_{r}=N_{l}$ and $S=T \subseteq N$.
Proof: From (6) and Lemmas 3.1, 3.2, 3.3 and 3.4 the Theorem is proved.
Lemma 2.5: Let $I=\left\{a \in R: N_{l} a=0\right\}$, then I is an ideal of R.
Proof: First we show that $([R, R], R, R) \subseteq I$. By taking $y=z=x$ in (1), we obtain $(x, x, x)+(x, x, x)=2(x, x, x) \in N_{l}$. So $(x, x, x) \in N_{l}$.
Let $S(x, y, z)=(x, y, z)+(y, z, x)+(z, x, y)$.
Now linearization of (x, x, x) gives $(x, y, z)+(y, z, x)+(z, x, y)+(y, x, z)+(z, y, x)+(x, z, y) \in N_{l}$.
i.e., $S(x, y, z)+S(y, x, z) \in N_{l}$.

We have $D(x, y, z)=[x y, z]-x[y, z]-[x, z] y-(x, y, z)-(z, x, y)+(x, z, y)=0$.
This identity is valid in any arbitrary ring.
Now $D(x, y, z)-D(y, x, z)$ gives
$[[x, y], z]+[[y, z], x]+[[z, x], y]=S(x, y, z)-S(y, x, z)$.
If $z \in N_{l}$, we obtain $S(x, y, z)-S(y, x, z) \in N_{l}$.
But from (9), $S(x, y, z)+S(y, x, z) \in N_{l}$.
i.e., $2 S(x, y, z) \in N_{l \text {. }}$.
i.e., $S(x, y, z) \in N_{l}$.
i.e., $(x, y, z)+(y, z, x)+(z, x, y) \in N_{l}$.

But $(x, y, z),(z, x, y) \in N_{l}$ implies $(y, z, x) \in N_{l}$.
i.e., $\left(R, N_{l}, R\right) \subseteq N_{l}$ implies $\left(\left(R, N_{l}, R\right), R, R\right)=0$.

Now in (10) substituting $x=n$ and forming the associators with r, s and using (12), we obtain
$([n y, z], r, s)=(n[y, z], r, s)+([n, z] y, r, s)+((n, y, z), r, s)+((z, n, y), r, s)-((n, z, y), r, s)$
$=(n[y, z], r, s)+([n, z] y, r, s)+((z, n, y), r, s)$.
i.e., $\left(\left[N_{l} R, R\right], R, R\right)=\left(N_{l}[R, R], R, R\right)+\left(\left[N_{l}, R\right] R, R, R\right)+\left(\left(R, N_{l}, R\right), R, R\right)$.
i.e., $\left(N_{l}[R, R], R, R\right)=\left(\left[N_{l} R, R\right], R, R\right)-\left(\left[N_{l}, R\right] R, R, R\right)$

```
\(=\left(\left(N_{l} R\right) R-R\left(N_{l} R\right)-\left(N_{l} R\right) R+\left(R N_{l}\right) R, R, R\right)\)
\(=\left(\left(R, N_{l}, R\right), R, R\right)\)
\(=0\) from (12).
Thus \(N_{l}([R, R], R, R)=\left(N_{l}[R, R], R, R\right)=0\).
```

Hence we have, $([R, R], R, R) \subseteq I$.
Now let $a \in I, n \in N_{l}$ and $x, y, z, w \in R$. Thus we obtain
$n(a x)=(n a) x=0$ implies $I R \subseteq I$.
Now from (13), we obtain
$n(x a)=n[x, a] \in N_{l}$.
Since $n a=0$ and $n \in N_{l}$, we obtain $n(a, x, y)=0$.
Using (15), (1) and since N_{l} is an associative subring of R, we obtain
$n((y x) a)-n(y(x a))=n(y, x, a)$

$$
\begin{equation*}
=n((a, x, y)+(y, x, a)) \in N_{l} \tag{16}
\end{equation*}
$$

Applying (16) and $n(x a) \in N_{l}$, we obtain
$n(y(x a)) \in N_{l}$.
Using (17) and (13), we obtain
$(n(x a)) y=n((x a) y)$

$$
=n[x a, y]+n(y(x a)) \in N_{l} .
$$

Combining the above with $n(x a) \in N_{l}$, we obtain
$n(x a)(y, z, w)=((n(x a)) y, z, w)$

$$
=0 \text {. }
$$

Hence $n(x a) \in T$ and thus $n(x a)=0$ implies $R I \subseteq I$.
Therefore I is an ideal of R and thus $N I=0$.
Theorem 3.2: If N_{l} is the Lie ideal of a prime ring R with $N_{l} \neq 0$ and satisfying $(x, y, z)+(z, y, x) \in N_{l}$, then R is either associative or commutative.
Proof: Since R is prime using (5), we obtain either $A=0$ or $T=0$. If $A=0$, then R is associative. Hence we assume that T $=0$. Since N_{l} is the Lie ideal of R, using Lemma 3.2, we see that the ideal of R generated by N_{l} is $N_{l}+N_{l} R$. Then $N_{l} I=0$ from Lemma 3.5. Hence we obtain

$$
\begin{aligned}
& \left(N_{l}+N_{l} R\right) I \subseteq N_{l} I+\left(N_{l} R\right) I \\
& \quad=N_{l} I+\left(N_{l}, R, I\right)+N_{l}(R I) \\
& \quad \subseteq N_{l} I+N_{l}(R I) \\
& \quad=0
\end{aligned}
$$

Thus $[R, R] \subseteq N_{l}$. Now R satisfies Kleinfeld's hypothesis [1]. Hence it follows that R is either associative or commutative. This completes the proof of the Theorem.

REFERENCES

Kleinfeld, E. "Rings with (x, y, x) and commutators in the left nucleus", Comm. Algebra, 16, 2023-2029, (1988).
Yen, C. T. "Rings with $(x, y, z)+(z, y, x)$ and $[N, R]$ in the left nucleus", Soochow Journal of Math., Vol, 19 (3), 253-257, (1993).
Yen, C. T. "Rings with (R, R, R) and $[(R, R, R), R]$ in the left nucleus", Tamkang Journal of Math., 24, 209-213, (1993).
Yen, C. T., "Rings with associators in the nuclei", Chung Yuan Journal, 28, 7-9, (2000).
Yen, C. T., "Simple rings of characteristic not 2 with associators in the left nucleus are associative", Tamkang Journal of Math., Vol 33 (1), 93-95, (2002).
6. Yen. C. T., "Rings with associators in the middle nucleus", Chung Yuan Journal, Vol 32 No. 3, 271-274, (2004),.
7. Zhevlakov, K. A., Slinko, A. M., Shestakov, I. P. and Shirshov, A. I. "Rings that are nearly associative", Academic Press, New York, (1982).

