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INTRODUCTION 
Kleinfeld [1] studied nonassociative rings with (

the weaker hypothesis that is, rings with (x, R, x

then Nr = Nl. He also proved that if R is a prime ring with 

is either associative or commutative. In this paper by considering 

properties of R with (x, R, x) in the left nucleus. Using these properties, we show that 

if R is a prime ring with Nl ≠ 0,then R is either associative or commutative.
 

PRILIMENARIES 
In a nonassociative ring R we define an associator as (

all x, y, z ∈ R. To make the notation more conv

In products, juxtaposition takes precedence, i, e, 

R) = (R, n, R) = (R, R, n) = 0}, the right nucleus as

R) = 0}. A ring R is said to be prime if whenever 

is said to be semiprime if for any ideal A 

trivial ideals. And a ring is said to be simple if whenever 

Let R be a nonassociative ring satisfying (x, R, x

(x, y, z) + (z, y, x) ∈ Nl.    

Let Nl and Nr be the Lie ideals of R. Then  

[Nl, R] ⊆ Nl     

and [Nr, R] ⊆ Nr. 
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be the Lie ideals of a nonassociative ring R, then [Nl, R] ⊆ Nl and [Nr, R] ⊆ Nr 

. If R is a prime ring with Nl ≠ 0, and (x, R, x) in the left nucleus then 
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Kleinfeld [1] studied nonassociative rings with (x, R, x) and [R, R] in the left nucleus. Yen [2] considered the rings w

x, R, x) and [Nl, R] in the left nucleus and proved that if 

is a prime ring with Nl ≠ 0 satisfying one additional condition 

s either associative or commutative. In this paper by considering Nl and Nr as the Lie ideals of a ring 

) in the left nucleus. Using these properties, we show that Nl[R, R] ⊆

is either associative or commutative. 

we define an associator as (x, y, z) = (xy) z – x (yz) and the commutator as [

. To make the notation more convenient we often use ‘⋅’ to indicate multiplication as well as juxtaposition. 

In products, juxtaposition takes precedence, i, e, xy ⋅ z ≡ (xy) z. The nucleus of a ring R is defined as 

) = 0}, the right nucleus as Nr = {n ∈ R / (R, R, n) = 0} and the left nucleus as

is said to be prime if whenever A and B are ideals of R such that AB = 0, then either 

 of R, A
2
 = 0 implies A = 0. These rings are also refered to as rings free from 

trivial ideals. And a ring is said to be simple if whenever A is an ideal of R, then either A= R or A

x, R, x) ⊆ Nl, that is, 
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 Also if (x, R, x) is in the left 

) in the left nucleus then R is either associative or 

TUA College of Engineering, JNTUA University, Ananthapuramu, Andhra Pradesh, 

] in the left nucleus. Yen [2] considered the rings with 

] in the left nucleus and proved that if R is a semiprime ring, 

0 satisfying one additional condition Nl[R, R] ⊆ Nl, then R 

as the Lie ideals of a ring R, we present some 

⊆ Nl. Also we prove that, 

) and the commutator as [x, y] = xy – yx for 

’ to indicate multiplication as well as juxtaposition. 

is defined as N = {n ∈ R / (n, R, 

and the left nucleus as Nl = {n ∈ R / (n, R, 

= 0, then either A = 0 or B = 0 and 

= 0. These rings are also refered to as rings free from 

A = 0. 

 (1) 

 (2) 
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We use Teichmuller identity which is valid in any arbitrary ring.  

(wx, y, z) – (w, xy, z) + (w, x, yz) – w(x, y, z) – (w, x, y) z = 0,       (3) 

for all, w, x, y, z ∈ R.  

Then with w = n ∈ Nl in (3), we obtain  

(nx, y, z) = n(x, y, z). 

Since Nl is the Lie ideal from (2), we obtain 

(nx, y, z) = n(x, y, z) = (xn, y, z),           (4) 

for all, n ∈ Nl.  

Thus Nl is the associative subring of R. 
 

MAIN SECTION 
Lemma 3.1: Let T = {t ∈ Nl : t(R, R, R) = 0}, then T is an ideal of R. 

Proof: In (4) substituting n = t, we obtain 

(tx, y, z) = t(x, y, z) = (xt, y, z) = 0. 

Thus tR ⊂ Nl and Rt ⊂ Nl. 

Also, tw ⋅ (x, y, z) = t ⋅ w(x, y, z). 

Multiplying (3) with t on the left side, we obtain 

t ⋅ w(x, y, z) = – t ⋅ (w, x, y)z  

 = – t (w, x, y) ⋅ z  

 = 0. 

Hence tw ⋅ (x, y, z) = 0. Thus TR ⊆ T. 

Now using TR ⊆ T, (2), (4), RT ⊂ Nl and (1), we obtain 

wt ⋅ (x, y, z) = [w, t] (x, y, z) 

 = ([w, t]x, y, z) 

 = ((wt)x, y, z) – ((tw)x, y, z) 

 = ([wt, x], y, z) + (x(wt), y, z) – (t(wx), y, z) 

 = ([wt, x], y, z) + (x(wt), y, z) 

 = – ((x, w, t), y, z) + ((xw)t, y, z) 

 = – ((x, w, t) + (t, w, x), y, z) 

 = 0. 

Hence RT ⊆ T. Thus T is an ideal of R. From the definition of T, we obtain T(R, R, R) = 0.  

This completes the proof of the Lemma.  
 

Let A be the associator ideal of R. We assume that R satisfies (1) and also R is semiprime. Using Lemma 3.1 and 

equation (3), we obtain T ⋅ A = 0 and hence (T ∩ A)
2
 = 0. Thus we have T ∩ A = 0 and A ⋅ T = 0.   (5) 

From Lemma 3.1 and equation (3), we obtain  

(R, T, R) = 0.        (6) 

Lemma 3.2: Let R be a nonassociative ring satisfying(x, y, z) + (z, y, x) ∈ Nl. Then (R, R, Nl) = 0. 

Proof: Let n ∈ Nl, then from (1), we obtain  

(x, y, n) = (x, y, n) + (n, y, x) ∈ Nl.  

Also from (3), we obtain 

z (x, y, n) = (zx, y, n) – (z, xy, n) + (z, x, yn) – (z, x, y)n. 

Hence using these, (4) and (1), we obtain 

(x, y, n)(z, r, s) = (z(x, y, n), r, s) 

 = ((zx, y, n), r, s) – ((z, xy, n), r, s) + ((z, x, yn), r, s) – ((z, x, y)n, r, s) 

 = ((z, x, yn), r, s) – ((z, x, y)n, r, s) 

 = – ((yn, x, z), r, s) – (n(z, x, y), r, s) 

 = – (n(y, x, z), r, s) – n((z, x, y), r, s) 

 = – n((y, x, z), r, s) – n((z, x, y), r, s) 

 = – n((y, x, z) + (z, x, y), r, s)  

 = 0. 

Hence (x, y, n) ∈ T.  
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Since (x, y, n) is also an associator, it is also in A.  

Thus from (5), we obtain (x, y, n) = 0.  

Hence (R, R, Nl) = 0.  

From Lemma 3.2, we obtain Nl ⊆ Nr.          (7) 

 

Let n ∈ Nr. Then with z = n in (3), we obtain  

(w, x, yn) = (w, x, y) n. Thus Nr is an associative subring of R. 

Now since Nr is the Lie ideal of R, we obtain 

(w, x, yn) = (w, x, y)n = (w, x, ny),          (8) 

for all n ∈ Nr and w, x, y ∈ R.  

 

Lemma 3.3: Let Nr be the Lie ideal of R and let  

S = {n ∈ Nr : (R, R, R)n = 0}, then S is an ideal of R, (R, R, R)S = 0, S ∩ A = 0, S ⋅ A = A ⋅ S = 0 and T ⊆ S. 

Proof: Using (1), (3), (5), (7) and (8) and the proof of Lemma 3.1, this Lemma is proved.  

 

Lemma 3.4: If Nr and Nl are the Lie ideals of R, then Nr = Nl and S = T. 

Proof: Let us assume that (R, R, n) = 0, then from (1), we obtain (n, x, y) = (n, x, y) + (y, x, n) ∈ Nl.  

Now using (1), (7), (8) and [Nr, R] ⊆ Nr, and since Nr is an associative subring of R, we obtain 

(nx, y, z) – n (x, y, z) = {(nx, y, z) + (z, y, nx)} – n{(x, y, z) + (z, y, x)} + [n, (z, y, x)] ∈ Nr. 

From the above equation and (n, R, R) ⊆ Nl ⊆ Nr and with w = n in (3), we obtain 

(n, x, y)z = {(nx, y, z) – n(x, y, z)} – (n, xy, z) + (n, x, yz) ∈ Nr. 

Hence using this and (8), we obtain (s, r, z) (n, x, y) = (s, r, (n, x, y) z) = 0, which shows that (n, x, y) ∈ S ∩ A and thus 

from Lemma 3.3, we have (n, x, y) = 0.  

Hence Nr ⊆ Nl . Thus from (7), we have Nr = Nl. From Lemma 3.3 again, S ⋅ A = 0 and so S = T. This completes the proof 

of the Lemma. 

 

Theorem 3.1: If R is a semiprime ring satisfying (x, y, z) + (z, y, x) ∈ Nl, where Nl is the Lie ideal of R, then T is an ideal 

of R and (Nl, R, R) = (R, T, R) = (R, R, Nl) = 0. Also, if [Nr, R] ⊆ Nr, then Nr = Nl and S = T ⊆ N. 

Proof: From (6) and Lemmas 3.1, 3.2, 3.3 and 3.4 the Theorem is proved.  

 

Lemma 2.5: Let I = {a ∈ R : Nl a = 0}, then I is an ideal of R. 

Proof: First we show that ([R, R], R, R) ⊆ I. By taking y = z = x in (1), we obtain (x, x, x) + (x, x, x) = 2(x, x, x) ∈ Nl. So 

(x, x, x) ∈ Nl. 

Let S(x, y, z) = (x, y, z) + (y, z, x) + (z, x, y). 

Now linearization of (x, x, x) gives (x, y, z) + (y, z, x) + (z, x, y) + (y, x, z) + (z, y, x) + (x, z, y) ∈ Nl. 

i.e., S(x, y, z) + S(y, x, z) ∈ Nl.           (9) 

We have D(x, y, z) = [xy, z] – x[y, z] – [x, z]y – (x, y, z) – (z, x, y) + (x, z, y) = 0.     (10) 

This identity is valid in any arbitrary ring. 

Now D(x, y, z) – D(y, x, z) gives 

[[x, y], z] + [[y, z], x] + [[z, x], y] = S(x, y, z) – S(y, x, z). 

If z ∈ Nl, we obtain S(x, y, z) – S(y, x, z) ∈ Nl.         (11) 

But from (9), S(x, y, z) + S(y, x, z) ∈ Nl. 

 i.e., 2S(x, y, z) ∈ Nl.. 

 i.e., S(x, y, z) ∈ Nl.  

i.e., (x, y, z) + (y, z, x) + (z, x, y) ∈ Nl.  

But (x, y, z), (z, x, y) ∈ Nl implies (y, z, x) ∈ Nl.  

i.e., (R, Nl, R) ⊆ Nl implies ((R, Nl, R), R, R) = 0.        (12) 

Now in (10) substituting x = n and forming the associators with r, s and using (12), we obtain 

([ny, z], r, s) = (n[y, z], r, s) + ([n, z] y, r, s) + ((n, y, z), r, s) + ((z, n, y), r, s) – ((n, z, y), r, s) 

 = (n[y, z], r, s) + ([n, z]y, r, s) + ((z, n, y), r, s). 

i.e., ([NlR, R], R, R) = (Nl[R, R], R, R) + ([Nl, R] R, R, R)+ ((R, Nl, R), R, R). 

i.e., (Nl[R, R], R, R) = ([NlR, R], R, R) – ([Nl, R] R, R, R) 
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 = ((NlR) R – R (NlR) – (NlR) R + (RNl) R, R, R) 

 = ((R, Nl, R), R, R) 

 = 0 from (12). 

Thus Nl([R, R], R, R) = (Nl[R, R], R, R) = 0.         (13) 

Hence we have, ([R, R], R, R) ⊆ I.          (14) 

Now let a ∈ I, n ∈ Nl and x, y, z, w ∈ R. Thus we obtain  

n(ax) = (na)x = 0 implies IR ⊆ I. 

Now from (13), we obtain  

n(xa) = n[x, a] ∈ Nl. 

Since na = 0 and n ∈ Nl, we obtain n(a, x, y) = 0.         (15) 

Using (15), (1) and since Nl is an associative subring of R, we obtain  

n((yx)a) – n(y(xa)) = n(y, x, a) 

 = n((a, x, y) + (y, x, a)) ∈ Nl.           (16) 

Applying (16) and n(xa) ∈ Nl, we obtain 

n(y(xa)) ∈ Nl.             (17) 

Using (17) and (13), we obtain 

(n(xa))y = n((xa)y) 

 = n[xa, y] + n(y(xa)) ∈ Nl. 

Combining the above with n(xa) ∈ Nl, we obtain  

n(xa)(y, z, w) = ((n(xa))y, z, w)  

 = 0. 

Hence n(xa) ∈ T and thus n(xa) = 0 implies RI ⊆ I. 

Therefore I is an ideal of R and thus NI = 0.  

Theorem 3.2: If Nl is the Lie ideal of a prime ring R with Nl ≠ 0 and satisfying (x, y, z) + (z, y, x) ∈ Nl, then R is either 

associative or commutative. 

Proof: Since R is prime using (5), we obtain either A = 0 or T = 0. If A = 0, then R is associative. Hence we assume that T 

= 0. Since Nl is the Lie ideal of R, using Lemma 3.2, we see that the ideal of R generated by Nl is Nl + NlR. Then NlI = 0 

from Lemma 3.5. Hence we obtain 

 (Nl + Nl R)I ⊆ Nl I + (NlR)I 

 = Nl I + (Nl, R, I ) + Nl (RI ) 

 ⊆ Nl I + Nl (RI ) 

 = 0.  

Thus [R, R] ⊆ Nl. Now R satisfies Kleinfeld’s hypothesis [1]. Hence it follows that R is either associative or 

commutative. This completes the proof of the Theorem.  
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