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INTRODUCTION 
Chen (2000) proposed a new two parameter lifetime distribution with bathtub shaped or increasing failure rate (IFR) 

function. Some probability distributions have been proposed with modals for bathtub

(1980), X i.e. and Lai (1996). The new two para

function compared with other models has some useful properties. It is observed that the lifetime distribution of many 

electronic, mechanical and electro mechanical products often ha

analysis especially over the life-cycle of the product, it usually involves high initial failure rates (infants mortality) and 

eventual high failure rates due to aging and indicating a bathtub shap

electronic and mechanical products, the failure rate function has a bathtub

failure phase with a decreasing failure rate, normal use phase with an approximately cons

phase with an increasing failure rate models which allow only monotone failure rates might not be appropriate or 

adequate for modeling the whole bathtub-

real life data with bathtub-shaped failure rates, such as Gaver and

(2000), Xai et al.(2002) and Wu et al. (2004). Many parametric probability distributions have been introduced to analyze 

sets real data with bathtub-shapes failure rates. The bathtub

modal for some electronic and mechanical products as well as the lifetime of humans. The previous work in detail on 

parametric probability distributions with bathtub

papers. Researchers got interested in distributions with non
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unimodal hazard functions and noticed that distributions with one or two parameter like the Weibull distributions have 

very strong restrictions on the data. Smith and Bain (1975) gave the exponential power distribution whose hazard 

function has a bathtub shape. Mudholkar and Srivastava (1993) provided an Exponentiated-Weibull distribution. This 

distribution has monotone increasing, monotone decreasing, bathtub or unimodal failure rate depending on the different 

parameter ranges. Chen (2000) proposed a two parameter lifetime distribution with bathtub-shape or increasing hazard 

function. Its cumulative distribution function (CDF) is given by 
 

 ����� = 1-����	
���, (x>0, λ, β>0)           (1.1)  

And hence the probability distribution function (PDF) is given by 

 f(x) = λ β �x��	� ���
 ����	
���, (x>0, λ, β>0)          (1.2) 

If a random variables X has a Chen distribution, then the distribution of Y= �� may be termed as an inverse Chen 

distribution (ICD). Its cumulative distribution function (CDF) is define by 

 F(Y) = P(Y y) = P (
�� ≤ �) 

 = P(
�� ≤ �) = P(� ≥ �� )  

 =1- P(� < �� ) 

 = 1- FC (
��)  

 = 1- (1-����	
����� 

 F(y) =����	
����, (y>0, λ, β>0)           (1.3) 
 

 
 

And the probability density function ( pdf) of Inverse Chen distribution (ICD) is 

f (y) = � � �	�����  �[�������	
����] , (y>0, λ, β>0)                       

(1.4) 
 

 
 

SURVIVAL FUNCTION 
The object of primary interest is the survival function, conventionally denoted by S, which is defined as 
 S(t) = Pr(T>t) (2.1) 
where t is time, T is a random variable denoting the time of death, and "Pr" stands for probability. That is, 

the survival function is the probability that the time of death is later than some specified time t. The survival 
function is also called the survivor function or survivorship function in problems of biological survival, and 
the reliability function in mechanical survival problems. In the latter case, the reliability function is denoted R 
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(t). Usually one assumes S(0) = 1, although it could be less than 1 if there is the possibility of immediate death 
or failure. The survival function can be expressed in terms of probability distribution and probability density 
functions 

 S(t) = Pr(T>t) = ! "�#�$% du = 1- F(t)             (2.2) 

Similarly, a survival event density function can be defined as 

 &'(t) = 
((% S(t) = 

((% ! "�#�$% du =
((% [1- F(t)] = –f(t)           (2.3)  

Now the survival function of Inverse Chen Distribution (ICD) is  

 S(t) = 1- F(t) 

 S(t) = 1- ����	
)���               (2.4) 
 

 
HAZARD FUNCTION 

The hazard function, conventionally denoted λ, is defined as the event rate at time t conditional on survival 
until time t or later (that is, T ≥ t), 

  

 λ (t) =lim(%→. /0 �%123%�(%|25%�(%.7�%�  = 
8�%�7�%� = - 

79�:�7�%�   (3.1) 

Force of mortality is a synonym of hazard function which is used particularly in demography and actuarial 
science, where it is denoted by;. The term hazard rate is another synonym. The hazard function must be non-

negative, λ (t) ≥ 0, and its integral over [0, ] must be infinite, but is not otherwise constrained; it may be 
increasing or decreasing, non-monotonic, or discontinuous. An example is the bathtub curve hazard function, 
which is large for small values of t, decreasing to some minimum, and thereafter increasing again; this can 
model the property of some mechanical systems to either fail soon after operation, or much later, as the 
system ages. The hazard function can alternatively be represented in terms of the cumulative hazard function, 
conventionally denoted:  

 

(t) = - log S(t)             (3.2) 
so transposing signs and exponentiation 
 S(t) = exp (-(t))              (3.3) 
or differentiating (with the chain rule) 

 
((% (t) = - 

79�:�7�%�  = �(t)              (3.4)  

The name "cumulative hazard function" is derived from the fact that  

(t) = ! ��u�%.  du             (3.5) 

which is the "accumulation" of the hazard over time. 
From the definition of (t), we see that it increases without bound as t tends to infinity (assuming that S(t) 

tends to zero). This implies that �(t) must not decrease too quickly, since, by definition, the cumulative hazard 
has to diverge. For example, exp(-t) is not the hazard function of any survival distribution, because its integral 
converges to1. 
Now the Hazard function of Inverse Chen Distribution (ICD) is given by 

 h (t) = 8�%�7�%� 
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 h(t) = 
� � %���=>�  
[)��=?�>�@)���]

 �	
?�>�@)���                 (3.6)  

 

 

 

 

 
 

MAXIMUM LIKELIHOOD ESTIMATION 

The probability density function (pdf) of Inverse Chen distribution (ICD) is 

f(y) = λ β �	�����  �[�������	
����] , (y>0, λ, β>0)                  (4.1) 

In this section we use the maximum likelihood method to estimate the two unknown parameters λ and β. Suppose ��, �A,…, �B is a random sample from ICD (λ, β), then the likelihood function of the observed data is 

L = ����B [∏ �DB� ]	����� �∑ {�G������	
�G���}I>                   (4.2) 

The log likelihood becomes J∗ = n (log λ + log β) - (1+β)∑ log  �DBDN�  +∑ [�D 	� + ��1 − ��G���]BDN�                 (4.3) 

The corresponding likelihood equations are  

 
RS∗
R�  = 

B� + n – ∑ ��G��BDN�  = 0                     (4.4) 

And 

 
RS∗
R�  = 

B� –∑ TUV�D BDN�  -∑ �DBDN� 	�
 + λ∑ ��G��BDN�  �D 	� TUV�D  = 0               (4.5)  

From (4.4) we get the MLE of �  

 �W = B
∑ 
�G��IGX> 	Y                        (4.6) 

From (4.6), �W  is the solution of the following non linear equation 

 
B� –∑ TUV�D BDN�  -∑ �DBDN� 	�

 + 
B ∑ 
�G��IGX>  �G�� Z[\�G ∑ 
�G��IGX> 	Y  = 0                   (4.7) 

A closed form solution of (4.7) does not exist, so a numerical technique must be used to find the maximum likelihood 

estimate of β for any given set. 
 

APPROXIMATE CONFIDENCE INTERVAL 

The exact distribution of MLEs cannot be obtained explicitly. Therefore, the asymptotic properties (Chaudhary A.K. and 

Kumar V. (2014).) of MLEs can be used to construct the confidence intervals for the parameters. Under some regularity 

conditions, the MLEs 

 ]̂ = (�W, �W) →_A (0, �I�θ��	�)                     (5.1) 

Where I(θ) is the variance matrix. As I (θ) involves the unknown parameter, we replace these parameter by their 

corresponding MLEs to obtain an estimate I(]̂)  

 I (]̂) = - b RcS∗
R�c RcS∗

R�R�RcS∗
R�R� RcS∗

R�c  d��N�e,�N�e�
                   (5.2) 

Where 

 
RcS∗
R�c  = − B�c                 (5.3) 
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and 

 
 RcS∗
R�c  = − B�c + ∑ �TUV�D �ABDN� (�D 	� ) - λ∑ [�TUV�D �A��G��BDN� �D 	�(�D 	� + 1)]               (5.4) 

RcS∗
R�R� = ∑ ��G��BDN�  �D 	� TUV�D                     (5.5)

   

And 

 
RcS∗
R�R� = ∑ ��G��BDN�  �D 	�  TUV�D                      (5.6) 

The diagonal elements of �I�θ��	� provide the asymptotic variance for the parameters λ, β respectively. The 100 (1- f) % 

confidence intervals for λ, β can be constructed as 

 λ̂ ± g∝ Ai  ) jvar�λ̂�           

and �W  ± g∝ Ai  jvar�β̂�                      (5.7)  

where g∝ Ai  is the upper percentile of standard normal variate.  
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