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INTRODUCTION 
In this Paper we prove generalization of Nadler’s fixed point theorem. Let (X, d) be a metric space CB(X) denotes the 

collection of all nonempty closed bounded subset of X.

 For A.B ∈ CB(X) and x ∈ X 

Define 

 D(x, A) = inf {d(x, a) a ∈ A} 

 H(A, B) = max {sup D(a, B), sup D(b, A)}
                aεA                          b

 It is easy to see that H is a metric on CB(X). H is called the Hausdorff metric induced by d.

 Many fixed point theorems have been proved by various authors as gener

Mapping Principle one such generalization is due to Geraghty [1] is given in this paper.

 

DEFINITION 1.1 

 An element x ∈ X. is said to be a fixed point of a multi

One can show that [CB(X), H] is a complete metric space.

 In 1969 Nadler [2] extended the Banach Contraction Principle to set valued mapping.

 In this among other things, we give generalizations of Nadler’s fixed point theorem. The following Lemma has 

important role in the proof of main theorem.

LEMMA 1 

 Let (X, d) be a metric space and A, B 

d(a, b) ≤ H(A, B) + ∈. 
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In this Paper we prove generalization of Nadler’s fixed point theorem. Let (X, d) be a metric space CB(X) denotes the 

collection of all nonempty closed bounded subset of X. 

and 

H(A, B) = max {sup D(a, B), sup D(b, A)} 
A                          bεB 

It is easy to see that H is a metric on CB(X). H is called the Hausdorff metric induced by d.

Many fixed point theorems have been proved by various authors as generalization to Banach’s Contraction 

Mapping Principle one such generalization is due to Geraghty [1] is given in this paper. 

X. is said to be a fixed point of a multi-valued mappings. T : X ⟶ CB(X) if such that x 

an show that [CB(X), H] is a complete metric space. 

In 1969 Nadler [2] extended the Banach Contraction Principle to set valued mapping. 

In this among other things, we give generalizations of Nadler’s fixed point theorem. The following Lemma has 

role in the proof of main theorem. 

Let (X, d) be a metric space and A, B ∈ CB(X). Then for each a ∈ A and ∈ > 0, there exist an b 

 

www.statperson.com 

17 August 2014 

International Journal of 

2014). 

Generalization of Fixed Point Theorems 

linear analysis and concerned with the study of the 

functional equation in metric spaces. In this paper, we give generalization of some fixed theorems. The main theme of 

In this Paper we prove generalization of Nadler’s fixed point theorem. Let (X, d) be a metric space CB(X) denotes the 

It is easy to see that H is a metric on CB(X). H is called the Hausdorff metric induced by d. 
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CB(X) if such that x ∈ T(X). 

In this among other things, we give generalizations of Nadler’s fixed point theorem. The following Lemma has 

> 0, there exist an b ∈ B such that 
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MAIN RESULT 
 We start our work with our main result which can be regarded as an extension of extension of Nadler’s Fixed 

Point Theorem. 

 

THEOREM 1 
 Let (X, d) be a complete metric space and T be a mapping from X into CB(X) such that 

H(Tx, Ty) ≤ αd(x, y) + β[D(x, Tx) + D(y, Ty)] + γ[D(x, Ty) + D(y, Tx)] 

 For all x, y ∈ X. Where α, β, γ ≥ 0 and α + 2β+ 2γ < 1. Then T has a fixed point. 

PROOF 

 Let x0 ∈ X, x1 ∈ Tx0 and define 

 r = 
�����

��	���
 

If r = 0. The proof is clear. Now Assume r > 0 

Then it follows from lemma (1) that  

∋ x2 ∈ Tx1 d(x1, x2) ≤ H(Tx0, Tx1) + r 

∋ x3 ∈ Tx2 d(x2, x3) ≤ H(Tx1, Tx2) + r
2
 

: 

: 

∋ x(n+1) ∈ Txn2 d(xn, xn+1) ≤ H(Txn-1, Txn) + r
n
 

Hence we have, 

d(xn, xn+1)  ≤ H(Txn-1, Txn) + r
n
 

   ≤ α d(xn-1, xn) + β[D(xn, T xn) + D(xn-1, Txn-1)] 

    + γ[D(xn, Txn-1) + D(xn-1, Txn)] + r 
n
 

   ≤ α d(xn-1, xn) + β[d(xn, xn+1) + d(xn-1, xn)] 

    + γ[d(xn-1, xn) + d(xn, xn+1)] + r 
n
 

                                                    For all n ∈ N.  

it follows that,   d(xn, xn+1) ≤ r d (xn-1, xn) + 
rn

1-	β+γ
 

                                                       For all n ∈ N,  

it can be conclude that 

d(xn, xn+1) ≤ r
n
 d (x0, x1) + 

�rn

1-	β+γ
 

For all n ∈ N, Now since r < 1, then 

 ∑ ��
��� (xn, xn+1) < ∞ 

It follows that { xn } is a Cauchy sequence in X.  

By completeness of X there exist x* ∈ X such that, 

 lim
n→∞

 xn=x* 

We are going to show that x* is a fixed point of T.  

We have, 

 D(x*, Tx*)  ≤ d(x*, xn+1) + D(xn+1, Tx*) 

   ≤ d(x*, xn+1) + H(xn+1, Tx*) 

   ≤ d(x*, xn+1) + α d(xn, x*) + β [D(xn, Txn) + D(x*, Tx*)] 

    + γ[D(xn, Tx*) + D(xn, Txn)] 

For all n ∈ N, therefore 

D(x*, Tx*) ≤ d(x*, xn+1) + α d(xn, x*) + β [d(xn, xn+1) + D(x*, Tx*)] 

    + γ[D(xn, Tx*) + d(xn+1, x*)] ….. (1.1) 

For all n ∈ N, Passing the lim
n→∞

 in (1.1) then we have, 

D(x*, Tx*) ≤ (β + γ) D(x*, Tx*) 

On other hand, β + γ < 1, then 

D(x*, Tx*) = 0 

It follows that x* ∈ Tx*. 

CORLLARY 1 
 Let (X, d) be a complete metric space and Let T be a mapping from X. into X, such that 
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 D(Tx, Ty) ≤ α d(x, y)+ β[d(x, Tx)+d(y, Ty)] + γ[d(x, Ty)+d(y, Tx)] 

For all x, y ∈ X, where α, β, γ ≥ 0 and  

α + 2β+ 2γ < 1.  

Then T has a fixed point. 

COROLLARY 2 

 Let (X, d) be a complete metric space and Let T be a mapping from (X, d) into [CB(X), H], satisfies 

 H(Tx, Ty) ≤ a1 d(x, y) + a2 D(x, Tx) + a3 D(y, Ty)  

+ a4D(x, Ty) + a5 D(y, Tx) 

For all x, y ∈ X, where ai ≥ 0 and for each i ∈ {1, 2, ….. 5} 

 ∑ ai
5
1=1   < 1  Then T has a fixed point. 

COROLLARY 3 

 Let (X, d) be a complete metric space and let T be a mapping from (X, d) into [CB(X), H] satisfies 

H(Tx, Ty) ≤ α d(x, y) 

For all x, y ∈ X where 0 ≤ α < 1. 

 Then T has a fixed point. 

COROLLARY 4 

 Let (X, d) be a complete metric space and let T be a mapping from (X, d) into [CB(X), H] satisfies 

 H(Tx, Ty) ≤ β [D(x, Tx) + D(y, Ty)] 

For all x, y ∈ X where β ∈ "0, 1
2'. 

 Then T has a fixed point. 

COROLLARY 5 

Let (X, d) be a complete metric space and let T be a mapping from (X, d) into [CB(X), H] satisfies 

 H(Tx, Ty) ≤ γ [D(x, Ty) + D(y, Tx)] 

For all x, y ∈ X where γ ∈ "0, 1
2'. Then T has a fixed point. 

COROLLARY 6 

 Let (X, d) be a complete metric space and let T be a mapping from (X, d) into [CB(X), H] satisfies 

 H(Tx, Ty) ≤ α d(x, y) + β [D(x, Tx) + D(y, Ty)] 

For all x, y ∈ X where α + 2β < 1 

 Then T has a fixed point. 

 

THEOREM 2 

Let (X, d) be a complete metric space and let f : x ⟶ X be a mapping such that for each x, y ∈ X 

 D[f(x), f(y)] ≤ α[d(x, y), d(x.y)] 

Where α is a function from [0, ∞) into [0, 1) which satisfy the simple condition α(tn)⟶1. 

⇒ tn ⟶ 0 then F has a fixed point. 

 Z ∈ X and {f 
n
(x)} converges to Z. 

For each x ∈ X 

PROOF 
 Let (X, d) be a metric space. Let CB(X) denotes the collection of all non empty closed bounded subset of X. for 

A, B ∈ CB(X) and x ∈ X 

 D(x, A) = inf {d(x,a) a ∈ A} 

 Hd(A, B) = max {sup D(a, B), Sup D(b, A)} 
                  aεA                          bεB 

It is easy to see that Hd is a metric on CB(X). 

 Hd is called the Hausdorff metric induced by d. A point P ∈ X is said to be a fixed point of multi-valued 

mapping. 

 T : x ⟶ CB(X) if  P ∈ T(p) 

 The fixed point theory of multi-valued contraction was initiated by Nadler [2] in the following way. 

 

THEOREM 3 

 Let (X, d) be a complete metric space and let T be a mapping from X into CB(X) such that for all x, y ∈ X 

 Hd(Tx,Ty) ≤ rd(x, y) 
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Where 0 ≤ r < 1, Then T has a fixed point. 

THEOREM 4 
 Let (X, d) be a complete metric space and let T be a mapping from X into CB(X). Assume 

 Hd(Tx, Ty) ≤ α [d(x, y), d(x,y)] 

For all x, y ∈ X, where α is a function from [0, ∞) into [0, 1) satisfying 

lim sup α(s) < 1 
       s⟶tt 

For all t ∈ [0, ∞), then T has a fixed point. 

 Recently Eldved et.al [4] claimed that Nadler’s fixed point theorem is equivalent to Mizoguch and Takahashi’s 

Fixed Point Theorem. Very recently Suzuki’s [7] produced an example to disproved their claim and showed that 

Mizoguchi and Takahashi’s Fixed Point Theorem is a real generalization of Nadler’s theorem. 
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