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Abstract Introduction: The worldwide installed capacity of wind power reached 283 GW by the end of 2012. China (75,564 

MW), US (60,007 MW), Germany (31,332 MW) and Spain (22,796 MW) are ahead of India in fifth position. The short 

gestation periods for installing wind turbines, and the increasing reliability and performance of wind energy machines has 

made wind power a favoured choice for capacity addition in India. In Wind turbines, the wind plays an important and 

vital role. The non-conventional renewable wind energy which is cheap and readily available for use to produce 

electricity for institutions, hospitals, industries and upliftment of water to higher places for agriculture. Wind is the prime 

source from where wind energy can be generated. But when wind is not blowing strongly the wind turbines are unable to 

receive wind which causing failure of the system. In the present paper we have taken two non-identical warm standby 

system with failure due to non- availability of wind. When there is non-availability of wind the working of unit stops 

automatically. The failure time distribution is taken as exponential and repair time distribution as general. Using Semi 

Markov regenerative point technique we have calculated different reliability characteristics such as MTSF, reliability of 

the system, availability analysis in steady state, busy period analysis of the system under repair, expected number of visits 

by the repairman in the long run and profit-function. Special case by taking repair as exponential has been derived and 

graphs are drawn. 
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INTRODUCTION 
The development of wind power in India began in the 1990s, and has significantly increased in the last few years. 

Although a relative newcomer to the wind industry compared with Denmark or the United States, India has the fifth 

largest installed wind power capacity in the world. In 2009-10 India's growth rate was highest among the other top four 

countries. As of 31 March 2014 the installed capacity of wind power in India was 21136.3 MW
. 
Wind power accounts for 

8.5% of India's total installed power capacity, and it generates 1.6% of the country's power. To generate Wind –energy 

the wind plays the pivotal and vital role. The non-conventional renewable wind energy which is cheap and easily 

available for use produce wind energy which turn the large wind panes of wind-turbines to produce electricity for 
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institutions, hospitals, industries, and upliftment of water for drinking and irrigation for cities and agriculture. Wind is 

the primary source from where wind energy can be generated. When wind turbines becomes ineffective due to non-

availability of wind resulting failure of the system. 

Assumptions 
1. The failure time distribution is exponential whereas the repair time distribution is arbitrary of two non-identical 

units. 

2. The repairs are perfect and starts immediately upon failure of units with repair discipline are FCFS. 

3. The operation of the unit stops as soon as there is non-availability of wind. 

4. The failure of a unit is detected immediately and perfectly. 

5. The switches are instantaneous but not perfect. 

6. All random variables are mutually independent. 

 

SYMBOLS FOR STATES OF THE SYSTEM 
Superscripts: O, WS, SO, FNAW, SF 

Operative, Warm Standby, Stops the operation, Failure due to non-availability of wind, Switch failure respectively 

Subscripts: nasl, asl, ur, wr, uR  

Non-availability of wind, availability of wind, under repair, waiting for repair, under repair continued respectively 

Up states: 0, 1, 2, 9;  

Down states: 3, 4, 5, 6, 7, 8, 10, 11 

Regeneration point: 0, 1, 2, 4, 7, 10 

States of the System 

0(Oasl, WSnasl)  

The first unit is operative due to availability of wind and the second unit is warm standby with non-availability of wind.  

1(SOnasl, Oasl)  
The operation of the first unit stops automatically due to non-availability of wind and warm standby units starts operating 

due to availability of wind. 

2(FNASLur, Oasl)  

The first unit fails due to non-availability of wind undergoes repair and the second unit continues to be operative due to 

availability of wind.  

3(FNASLuR, SOnasl)  

The repair of the first unit is continued from state 2 and in the other unit the operation of the unit stops automatically due 

to non-availability of wind. 

4(FNASLur, SOnasl)  

The one unit fails due to non-availability of wind and undergoes repair and the other unit also stops automatically due to 

non-availability of wind. 

5(FNASLuR, FNASLwr)  

The repair of the first unit is continued from state 4 and the other unit is failed due to non-availability of wind in it and is 

waiting for repair. 

 
Figure 1: The State Transition Diagram 
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6 (Oasl, FNASLur)  

The first unit is operative due to availability of wind and the second unit failed due to non-availability of wind is under 

repair. 

7(SOnasl, SFur)  
The operation of the first unit stops automatically due to non-availability of wind and during switchover to the second 

unit switch fails and undergoes repair. 

8(FNASLwr, SFuR)  

The repair of failed switch is continued from state 7 and the first unit is failed due to non-availability of wind is waiting 

for repair. 

9(Oasl, SOnasl) 
The first unit is operative due to availability of wind and the operation of warm standby second unit is stopped due to 

non-availability of wind. 

10(SOnasl, SFur)  

The operation of the first unit stops automatically due to non-availability of wind and in the second unit switch fails and 

undergoes repair.  

11(FNASLwr, SFuR)  

The repair of the second unit is continued from state 10 and the first unit is failed due to non-availability of wind is 

waiting for repair. 

 

TRANSITION PROBABILITIES 
Simple probabilistic considerations yield the following expressions: 

p01 = 
λ�

λ�� λ� � λ�
, P07 = 

λ�

λ�� λ� � λ�
  

p09 = 
λ�

λ�� λ� � λ�
, p12 = 

λ�

λ�� λ� 
, p14 = 

λ�

λ�� λ�  
 

P20= G1
*
( λ1), P22

(3)
 = G1

*
( λ1)=p23, P72 = G2

*
( λ4),  

P72
(8)

 = G2
*
( λ4)= P78  

We can easily verify that 

p01 + p07 + p09 = 1, p12 + p14 = 1, p20 + p23 (=p22
(3)

)= 1, p46
(6)

= 1 p60
 
= 1,  

p72+ P72
(5) 

+ p74 = 1, p9,10 =1, p10,2 + p10,2
(11) 

= 1         (1)  

We can easily verify that 

p01 + p07 + p09 = 1, p12 + p14 = 1, p20 + p23 (=p22
(3)

)= 1, p46
(6)

= 1 p60
 
= 1,  

p72+ P72
(5) 

+ p74 = 1, p9,10 =1, p10,2 + p10,2
(11) 

= 1 (1)  

And mean sojourn time are  

µ0 = E(T) = � ��	 > ��
�
∞

�
           (2) 

Mean Time to System Failure  

We can regard the failed state as absorbing����� = �������������� + �������������� + ������ 

 ����� = �������������� + ������, ����� = �������������� + ���
������ 

����� = ��,�����            (3-5) 

Taking Laplace-Stiltjes transform of eq. (3-5) and solving for  

��
∗���  = N1(s) / D1(s)            (6)  

Where  

 N1(s) = ���
∗ ��� {  ���

∗ ��� ���
���∗���  + ���

∗ ��� } +  ���
∗ ��� ��,��

∗ ���  + ���
∗ ��� 

D1(s) = 1 - ���
∗ ���   ���

∗ ��� ���
∗ ��� 

Making use of relations (1) and (2) it can be shown that θ0(0) =1, which implies that θ0(t) is a proper distribution. 

MTSF = E[T] = d/ds θ0
*
(0)     = (D1

’
(0) - N1

’
(0)) / D1 (0) 

 

   s=0 

 = ( �� +p01 ��  + p01 p12 ��  + p09 �� ) / (1 - p01 p12 p20 )  

where  
�� = ���  + ���  + ��� , �� = ���  + ��� , �� = ���  + ��� 

(3)
, �� = ��,��  
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AVAILABILITY ANALYSIS 
Let Mi(t) be the probability of the system having started from state I is up at time t without making any other regenerative 

state belonging to E. By probabilistic arguments, we have  

The value of M0 (t), M1 (t), M2 (t), M4 (t) can be found easily. 

The point wise availability Ai (t) has the following recursive relations  

A0(t) = M0(t) + q01(t)[c]A1(t) + q07(t)[c]A7(t) + q09(t)[c]A9(t) 

A1(t) = M1(t) + q12(t)[c]A2(t) + q14(t)[c]A4(t), A2(t) = M2(t) + q20(t)[c]A0(t) + q22
(3)

(t)[c]A2(t) 

A4(t) = q46
(3)

(t)[c]A6(t), A6(t) = q60(t)[c]A0(t)  

A7(t) = (q72(t)+ q72
(8)

(t)) [c]A2(t) + q74 (t)[c]A4(t) 

A9(t) = M9(t) + q9,10(t)[c]A10(t), A10(t) = q10,2(t)[c]A2(t) + q10,2
(11)

(t)[c]A2(t)      (7-14)  

Taking Laplace Transform of eq. (7-14) and solving for ������  

 ������  = N2(s) / D2(s)            (15)  

where  

N2(s) = (1 - �  22
(3)

(s)) { !"  0(s) + � 01(s) !" 1(s) + � 09(s) !"  9(s)}+ !"  2(s){ � 01(s) � 42(s) +  �# 07(s)� � 72(s) + �  73
(8)

(s)) + �  09  

(s) �  9,10 (s)( �  10,2 (s) +�  10,2
(11)

(s))} 

D2(s) = (1 - �  22
(3)

(s)) { 1 - �  46
(5)

(s) � 60(s) ( � 01(s) �  44 (s) +  � 07(s) � 74(s))  

-  �# 20(s){ � 01(s)  �# 12(s)+ � 07(s)( �  72(s)) + �  72
(8)

(s) + �  09 (s) �  9,10 (s) 

  ( �  10,2 (s) +�  10,2
(11)

(s))} 

The steady state availability 

A0 = lim(→∞�������  = lim*→��� �������  = lim*→�
* +,�*�

 -,�*�
 

Using L’ Hospitals rule, we get 

A0 = lim*→�
 +,�*��*  +,′�*�

 -,′�*�
 = 

 +,���

 -,′���
          (16) 

Where 

N2(0)= p20(!"0(0) + p01!"1(0) + p09 !"9(0) ) + !"2(0) (p01p12 + p07 (p72  

 + p72
(8) 

+ p09 )) 

D2
’
(0) = p20{ �� + p01 �� + (p01 p14 + p07 p74 ) ��+ p07 �� + p07 �� + p09(�� + ���)  

 + �� { 1- ((p01p14
 
+ p07 p74 )} 

�� = � �.
�/�

, �� = ��� + � ��
�0�  +  �

��
, ��� = ���,� + � ��,�

����   

The expected up time of the system in (0, t] is  

12(t) = � ��
∝

�
�4�
4 So that 12

5 �s� =  
7"8 �9�

9
 =  

+,�:�

:-,�:�
        (17)  

The expected down time of the system in (0,t] is  

 1;(t) = t- 12(t) So that 1;
5 �s� =

�

9,  −  12
5 �s�         (18) 

The expected busy period of the server for repairing the failed unit under non-availability of wind in (0, t] 

R0(t) = S0(t) + q01(t)[c]R1(t) + q07(t)[c]R7(t) + q09(t)[c]R9(t) 

R1(t) = S1(t) + q12(t)[c]R2(t) + q14(t)[c]R4(t),  

R2(t) = q20(t)[c]R0(t) + q22
(3)

(t)[c]R2(t) 

R4(t) = q46
(3)

(t)[c]R6(t), R6(t) = q60(t)[c]R0(t)  

R7(t) = (q72(t)+ q72
(8)

(t)) [c]R2(t) + q74 (t)[c]R4(t) 

R9(t) = S9(t) + q9,10(t)[c]R10(t), R10(t) = q10,2(t) + q10,2
(11)

(t)[c]R2(t)       (19-26)  

Taking Laplace Transform of eq. (19-26) and solving for =�
5���  

=�
5���  = N3(s) / D2(s) (27)  

Where 

N2(s) = (1 - �  22
(3)

(s)) { >� 0(s) + � 01(s) >� 1(s) + � 09(s) >� 9(s)} and D2(s) is already defined. 

In the long run, R0 = 
 +?���

 -,′���
           (28) 

where N3(0)= p20(>�0(0) + p01>�1(0) + p09 >�9(0) ) and D2
’
(0) is already defined. 

The expected period of the system under non-availability of wind in (0, t] is  

1@A(t) = � =�
∝

�
�4�
4 So that 1@A

5  �s� =  
B"8 �9�

9
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The expected Busy period of the server for repair of dissimilar units by the repairman in (0, t] 
B0(t) = q01(t)[c]B1(t) + q07(t)[c]B7(t) + q09(t)[c]B9(t) 

B1(t) = q12(t)[c]B2(t) + q14(t)[c]B4(t), B2(t) = q20(t)[c] B0(t) + q22
(3)

(t)[c]B2(t) 

B4(t) = T4 (t)+ q46
(3)

(t)[c]B6(t), B6(t) = T6 (t)+ q60(t)[c]B0(t)  

B7(t) = (q72(t)+ q72
(8)

(t)) [c]B2(t) + q74 (t)[c]B4(t) 

B9(t) = q9,10(t)[c]B10(t), B10(t) = T10 (t)+ (q10,2(t) + q10,2
(11)

(t)[c]B2(t)       (29- 36)  

Taking Laplace Transform of eq. (29-36) and solving for C�
5 ���   

C�
5 ���  = N4(s) / D2(s)            (37) 

where  

N4(s) = (1 - �  22
(3)

(s)) { � 01(s) � 14(s)�  	"  4(s) + � 46 
(5)

(s) 	D 6(s)) +�  07
(3)

(s)  �# 74(s)(  	"  4(s)  

+  �  46
(5)

(s) 	D  6(s))+ � 09(s)  �# 09,10(s)  	"  10(s) )  

And D2(s) is already defined. 

In steady state, B0 = 
 +E���

 -,′���
           (38)  

where N4(0)= p20 {( p01 p14 + p07 p74) (	D4(0) +	D6(0)) + p09 	D10(0) } and D2
’
(0) is already defined. 

The expected busy period of the server for repair in (0, t] is  

1@2(t) = � C�
∝

�
�4�
4 So that 1@2

5  �s� =  
F"8 �9�

9
         (39) 

The expected Busy period of the server for repair of switch in (o, t] 
P0(t) = q01(t)[c]P1(t) + q07(t)[c]P7(t) + q09(t)[c]P9(t) 

P1(t) = q12(t)[c]P2(t) + q14(t)[c]P4(t), P2(t) = q20(t)[c]P0(t) + q22
(3)

(t)[c]P2(t) 

P4(t) = q46
(3)

(t)[c]P6(t), P6(t) = q60(t)[c]P0(t)  

P7(t) = L7(t)+ (q72(t)+ q72
(8)

(t)) [c]P2(t) + q74 (t)[c]P4(t) 

P9(t) = q9,10(t)[c]P10(t), P10(t) = (q10,2(t) + q10,2
(11)

(t))[c]P2(t)        (40-47)  

Taking Laplace Transform of eq. (40-47) and solving for  

 ��
5 ���  = N5(s) / D2(s)            (48)  

here N2(s) =  �# 07(s ) GD 7(s) � 1 - �  22
(3)

(s)) and D2(s) is defined earlier. 

In the long run, P0 = 
 +H���

 -,′���
           (49)  

where  

 N5 (0) = p20 p07 GD4(0)  

and D2
’
(0) is already defined. 

 The expected busy period of the server for repair of the switch in (0, t] is  

1@*(t) = � ��
∝

�
�4�
4 So that 1@*

5  �s� =  
I"8 �9�

9
         (50)  

The expected number of visits by the repairman for repairing the non-identical units in (0, t] 
H0(t) = Q01(t)[c]H1(t) + Q07(t)[c]H7(t) + Q09(t)[c]H9(t) 

H1(t) = Q12(t)[c][1+H2(t)] + Q14(t)[c][1+H4(t)], H2(t) = Q20(t)[c]H0(t) + Q22
(3)

(t)[c]H2(t) 

H4(t) = Q46
(3)

(t)[c]H6(t), H6(t) = Q60(t)[c]H0(t)  

H7(t) = (Q72(t)+ Q72
(8)

(t)) [c]H2(t) + Q74 (t)[c]H4(t) 

H9(t) = Q9,10(t)[c][1+H10(t)], H10(t) = (Q10,2(t)[c] + Q10,2
(11)

(t))[c]H2(t)      (51-58) 

Taking Laplace Transform of eq. (51-58) and solving for J�
∗���   

J�
∗���  = N6(s) / D3(s)            (59)  

Where 

N6(s) = (1 – � 22
(3)*

(s)) { �∗
01(s)� �∗

12(s)+ �∗
14(s)) + �∗ 09 (s) �∗ 9,10 (s)} 

D3(s) = (1 - � 22
(3)*

(s)) { 1 - (�∗
01(s) �∗ 14 (s) +  �∗

07(s) �∗
74(s)) �46

(5)*
(s) �∗

60(s)}  

  - �∗
20(s){ �∗

01(s) �∗
12(s)+ �∗

07(s)( �∗
72(s)) + �∗ 72

(8)
(s) + 

 �∗
09 (s) �∗

9,10 (s) ( �∗ 10,2 (s) +Q 10,2
(11)*

(s))} 

In the long run, H0 = 
 +K���

 -?′���
           (60)  

where N6(0)= p20 (p01 + p09) and D’3(0) is already defined. 

The expected number of visits by the repairman for repairing the switch in (0, t] 

V0(t) = Q01(t)[c]V1(t) + Q07(t)[c]V7(t) + Q09(t)[c]V9(t) 

V1(t) = Q12(t)[c]V2(t) + Q14(t)[c]V4(t), V2(t) = Q20(t)[c]V0(t) + Q22
(3)

(t)[c]V2(t) 
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V4(t) = Q46
(3)

(t)[c]V6(t), V6(t) = Q60(t)[c]V0(t)  

V7(t) = (Q72(t)[1+V2(t)]+ Q72
(8)

(t)) [c]V2(t) + Q74 (t)[c]V4(t) 

V9(t) = Q9,10(t)[c]V10(t), V10(t) = (Q10,2(t) + Q10,2
(11)

(t))[c]V2(t)       (61-68)  

Taking Laplace-Stieltjes transform of eq. (61-68) and solving for L�
∗���   

L�
∗���  = N7(s) / D4(s)            (69)  

where N7(s) = �∗ 07 (s) �∗ 72 (s) (1 – � 22
(3)*

(s)) and D4(s) is the same as D3(s)  

In the long run, V0 = 
 +M���

 -E′���
           (70)  

where N7(0)= p20 p07 p72 and D’3(0) is already defined. 

 

GAIN-FUNCTION ANALYSIS 
The Gain- function of the system considering mean up-time, expected busy period of the system under non-availability 

of wind when the units stops automatically, expected busy period of the server for repair of unit and switch, expected 

number of visits by the repairman for non-identical units failure, expected number of visits by the repairman for switch 

failure. 

The expected total Gain-function incurred in (0, t] is  

C (t) = Expected total revenue in (0, t] - expected total repair cost for switch in (0, t]  

• expected total repair cost for repairing the units in (0, t]  

• expected busy period of the system under non-availability of wind when the units automatically stop in (0, t]  

• expected number of visits by the repairman for repairing the switch in (0, t]  

• expected number of visits by the repairman for repairing of the non-identical units in (0, t]  

The expected total cost per unit time in steady state is  

C =lim(→∞�N���/��  = lim*→����N����  

 = K1A0 - K2P0 - K3B0 - K4R0 - K5V0 - K6H0  

Where  

K1: revenue per unit up-time,  

K2: cost per unit time for which the system is under switch repair 

K3: cost per unit time for which the system is under unit repair 

K4: when units automatically stop cost per unit time for which the system is under non-availability of wind  

K5: cost per visit by the repairman for which switch repair, 

K6: cost per visit by the repairman for non-identical units repair. 

 

CONCLUSION 
After studying the system, we have analyzed graphically that when the failure rate due to non-availability of wind and 

failure rate due to switch failure increases, the MTSF and steady state availability decreases and the Gain-Function also 

decreased as the failure increases. 
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