
 
How to site this article: Muthukrishnan R., E. D. Boobalan

of Statistika and Mathemtika Aug-Oct 2014; 11(2): 

Research Article  
 

Factor analysis based on classical and robust 

estimators 
 

Muthukrishnan R
1
, E D Boobalan

 
1,2

Department of Statistics, Bharathiar University, Coimbatore

Email: muthukrishnan70@rediffmail.com, boobalanstat@gmail.com

 

Abstract Introduction: The multivariate methods, such as principal component 

multivariate regressions etc., are mainly based on the empirical measures mean vector, covariance and correlation 

matrices. All these measures strongly affected by even a single outliers present in the mul

alternatives measures are established to overcome this limitation. Many multivariate robust procedures are established to 

estimate these measures. All these robust procedures established based on the sample of selecting the best 

(which represents the original data) nearly half of the data points. Among these, the minimum covariance determinant 

estimator (MCD) proposed by Rousseeuw (1984) is one of the highly robust estimators of estimating multivariate 

location and scatter. This paper provides an attempt to explore such robust procedures along with the application in factor 

analysis. Further it is proposed to construct robust factor analysis with the help of most widely used robust methods 

MVE, S and MM that can resist

by providing an empirical study with a help of MATLAB software.
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INTRODUCTION 
Multivariate analysis is a statistical technique for simultaneous analysis of two or more variables observed from one or 

more sample objects. The objective of the analysis is to estimate the

variables. When working with p-dimensional multivariate normal data both the location and scatter are of interest. The 

location is described by a mean vector which represents a point in the multidimensional space and the scatter is described 

by a variance-covariance matrix. The sample mean vector and the sample covariance matrix are the corner stone of the 

classical multivariate analysis. They are optimal when the underlying data are normal. They, however, are notorious for 

being extremely sensitive to outliers and heavy tailed 

estimators are available. These types of estimators indeed are much more robust against outliers and contaminated data. 

This paper provides a brief description on the robust estimators MCD, 

factor analysis using these robust estimators and efficiencies are measured with classical factor analysis. The brief 

introduction about factor analysis along with robust and classical counterpart is discussed in 

classical and robust estimators. The performance of the proposed method has been carried out with numerical 

experiments and the results are provided in the section 4. The findings and discussions are presented in the last sect
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The multivariate methods, such as principal component analysis, discriminant analysis, cluster analysis, 

multivariate regressions etc., are mainly based on the empirical measures mean vector, covariance and correlation 

matrices. All these measures strongly affected by even a single outliers present in the mul

alternatives measures are established to overcome this limitation. Many multivariate robust procedures are established to 

estimate these measures. All these robust procedures established based on the sample of selecting the best 

(which represents the original data) nearly half of the data points. Among these, the minimum covariance determinant 

estimator (MCD) proposed by Rousseeuw (1984) is one of the highly robust estimators of estimating multivariate 

atter. This paper provides an attempt to explore such robust procedures along with the application in factor 

analysis. Further it is proposed to construct robust factor analysis with the help of most widely used robust methods 

MVE, S and MM that can resist the effect of outliers. The efficiency of these estimators with classical one is carried out 

by providing an empirical study with a help of MATLAB software. 
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Multivariate analysis is a statistical technique for simultaneous analysis of two or more variables observed from one or 

the analysis is to estimate the extend or amount of relationship among the 

dimensional multivariate normal data both the location and scatter are of interest. The 

location is described by a mean vector which represents a point in the multidimensional space and the scatter is described 

sample mean vector and the sample covariance matrix are the corner stone of the 

classical multivariate analysis. They are optimal when the underlying data are normal. They, however, are notorious for 

being extremely sensitive to outliers and heavy tailed data. Robust alternatives of these classical location and scatter 

estimators are available. These types of estimators indeed are much more robust against outliers and contaminated data. 

This paper provides a brief description on the robust estimators MCD, MVE, S and MM. It is proposed to construct 

factor analysis using these robust estimators and efficiencies are measured with classical factor analysis. The brief 

introduction about factor analysis along with robust and classical counterpart is discussed in section 2. Section 3 provides 

classical and robust estimators. The performance of the proposed method has been carried out with numerical 

experiments and the results are provided in the section 4. The findings and discussions are presented in the last sect
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analysis, discriminant analysis, cluster analysis, 

multivariate regressions etc., are mainly based on the empirical measures mean vector, covariance and correlation 

matrices. All these measures strongly affected by even a single outliers present in the multivariate data set. Robust 

alternatives measures are established to overcome this limitation. Many multivariate robust procedures are established to 

estimate these measures. All these robust procedures established based on the sample of selecting the best observations 

(which represents the original data) nearly half of the data points. Among these, the minimum covariance determinant 

estimator (MCD) proposed by Rousseeuw (1984) is one of the highly robust estimators of estimating multivariate 

atter. This paper provides an attempt to explore such robust procedures along with the application in factor 

analysis. Further it is proposed to construct robust factor analysis with the help of most widely used robust methods 

the effect of outliers. The efficiency of these estimators with classical one is carried out 
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extend or amount of relationship among the 

dimensional multivariate normal data both the location and scatter are of interest. The 

location is described by a mean vector which represents a point in the multidimensional space and the scatter is described 

sample mean vector and the sample covariance matrix are the corner stone of the 

classical multivariate analysis. They are optimal when the underlying data are normal. They, however, are notorious for 

data. Robust alternatives of these classical location and scatter 

estimators are available. These types of estimators indeed are much more robust against outliers and contaminated data. 

MVE, S and MM. It is proposed to construct 

factor analysis using these robust estimators and efficiencies are measured with classical factor analysis. The brief 

section 2. Section 3 provides 

classical and robust estimators. The performance of the proposed method has been carried out with numerical 

experiments and the results are provided in the section 4. The findings and discussions are presented in the last section. 
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CLASSICAL AND ROBUST FACTOR ANALYSIS 
Factor analysis is a popular multivariate technique. Its goal is to approximate the p original variables of the dataset by 

linear combinations of a smaller number k of latent variables, called factors. The classical factor analysis (FA) starts with 

the usual sample covariance (or correlation) matrix and then the eigenvectors and eigenvalues of the matrix are employed 

for estimating the loading matrix. This must be done in such a way that the covariance matrix or the correlation matrix of 

the p original variables is fitted well. The factor analysis model contains many parameters, including the specific 

variances of the error components. The classical technique starts by computing the usual sample covariance matrix or the 

sample correlation matrix, followed by a second step which decomposes this matrix according to the model. This 

approach is not robust to outliers in the data, since they already have a large effect on the first step. The analysis, 

however, is not robust since outliers can have a large effect on the covariance (or correlation matrix) and the results 

obtained may be misleading or unreliable. A straightforward approach to robustify the classical FA is to replace the 

sample covariance (or correlation) matrix with a robust one. Therefore construct a robust factor analysis method, which 

in the first step computes a highly resistant scatter matrix such as the minimum covariance determinant (MCD) estimator 

(Rousseew 1985, 1999), Rousseeuw's minimum volume ellipsoid (MVE) estimator, Rousseeuw and Yohai's S-estimators 

and Huber's M-estimators [Campbell (1980, 1982); Davies (1987); Hampel, Ronchetti, Rousseeuw and Stahel (1986); 

Huber (1981); Kent and Tyler (1991); Lopuhaa (1989); Lopuhaa and Rousseeuw (1991); Maronna (1976); Rousseeuw 

(1985); Rousseeuw and Leroy (1987); Rousseeuw and Yohai (1984); Rousseeuw and van Zomeren (1990a, 1990b, 

1991); Tyler (1983, 1988, 1991)]. For the second step several methods are available, such as maximum likelihood 

estimation and the principal factor analysis method. 

 

CLASSICAL AND ROBUST ESTIMATORS 
Maximum Likelihood Estimator (MLE) 
The principle of maximum likelihood estimation (MLE), originally developed by R.A Fisher in 1920. Assuming that the 

data is drawn from a population whose distribution is multivariate normal, then the optimal estimators for location and 

dispersion are found, respectively, as the 1×Ρ  sample mean vector,  
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These are, obviously, mean-based estimators, so any unusual or extreme observation an arbitrarily inflate either of them. 

Robust Estimator 

The Minimum Volume Ellipsoid (MVE) estimator was first proposed by Rousseeuw (1984). It has been frequently used 

in detection of multivariate outliers. The estimation seeks to find the ellipsoid of minimum volume that covers a subset of 

at least h data points. Subsets of approximately 50% of the observations are examined to find the subset that minimizes 

the volume occupied by the data. The best subset (smallest volume) is then used to calculate the covariance matrix and 

the Mahalanobis distances to all the data points. An appropriate cut-off value is then estimated, and the observations with 

distances that exceed that cut-off are declared to be outliers. To minimize computation time, Rousseeuw and Leroy 

(1987) proposed a resampling algorithm in which subsamples of p+1 observations (p is the number of variables), the 

minimum to determine an ellipsoid in p-dimensional space, are initially drawn. Another robust estimator, minimum 

covariance determinant estimator (MCD) proposed by Rousseeuw (1984, 1985) is a highly robust estimator of 

multivariate location and scatter. In beginning of 1984 when Rousseeuw introduced nobody didn’t use it due to lack of 

information about the calculating procedure and also time consuming, so in practice one resort to approximate 

algorithms. After that the algorithm modified for the computation purpose. To overcome this limitation Rousseeuw 

(1999) introduced a new algorithm is called FAST-MCD algorithm. It is contain concentration step (C-step) procedure to 

simplify the computation process. A key step of new algorithm is the fact that starting from any approximation to the 

MCD, it is possible to compute another approximation with an even lower determinant. The FAST-MCD method is able 

to handle large data sets within a reasonable amount of time. In fact, Rousseeuw and Van Driessen (1999) successfully 
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analyzed with large data. Rousseeuw and Yohai (1984) introduced S estimator which is slightly different from the 

existing robust estimators. Also the authors studied the existence, consistency, asymptotic normality and breakdown 

point of the estimator. Davies (1987) investigated some properties of S-estimators of multivariate location and 

covariance. An S-estimator of multivariate location and scale minimizes the determinant of the covariance matrix, 

subject to a constraint on the magnitudes of the corresponding Mahalanobis distances. The multivariate MM-estimator 

was introduced by Tatsuoka and Tyler (2000) as belonging to a broad class of estimators namely multivariate M-

estimators with auxiliary scale. M-estimator was originally constructed by Huber (1964) for the estimation of a one-

dimensional location parameter. Maronna (1976) was the first to define M-estimator for multivariate location and 

covariance. The idea is to estimate the scale by means of a very robust S-estimator, and then estimate the location and 

shape using a different 
ρ
-function that yields better efficiency at the central model. The location and shape estimates 

inherit the breakdown point of the auxiliary scale and can be seen as a generalization of the regression MM-estimators of 

Yohai (1987). 

Numerical Study 

This section presents the performance of classical and various robust procedures, particularly MCD, MVE, S and MM 

are considered for the construction of factor analysis. Factor loadings of each variable by each factor under various 

procedures along with plots are also discussed in this section. The numerical study is carried out using MATLAB 

software which includes two packages namely forward Search Data Analysis (FSDA), Library for Robust Analysis 

(LIBRA). The study also provides results under different level of contamination of data. 

Experiment 1 
The factor analysis has performed in a real dataset under classical and robust procedures. The carbig dataset ( ) that 

contains various measured variables for about 392 automobiles. The p = 5 variables are the acceleration (X1), 

Displacement (X2), horsepower (X3), MPG (X4), and weight (X5). The summary of the factor loadings and variance 

explained under various procedures are listed in the table 1 and the factor loadings with 2% contamination are given in 

the table 2 which are given in the appendix. From the factor analysis, for the given data points there are two factors are 

extracted by all classical and robust procedures. It is observed from the table 1 the robust procedure also produces the 

same results as classical. For the contaminated data the deviation of factor loadings are very low in robust procedures but 

not in the case of classical procedures. The bi-plots of the factor loadings under various procedures with and without 

contamination displayed in the figure 1 and 2 respectively. It is observed that, all bi-plots based on the robust procedures 

with and without contamination is almost same, but in case of classical procedure the bi-plot shows the difference. 
 

 
    (a)    (b)   (c) 

 
       (d)     (e)  

Figure 1: Bi-Plot 
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    (a)     (b)    (c) 
 

    

       (d)    (e)  

Figure 2: Bi-Plot (With Contamination) (a) Classical (b) MCD (c) MVE (d) S (e) MM 
 

Experiment 2  
The Olympic decathlon dataset is considered (see Linden 1987) for the experiment. The dataset description is as follows: 

the dataset contains the performances of 33 men's decathlon at the Olympic Games (1988) with ten different events. The 

ten different events are as follows 100 meters (Y1), long jump (Y2), shot-put (Y3), high jump (Y4), 400 meters (Y5), 

110-meter hurdles (Y6), discus throw (Y7), pole vault (Y8), javelin (Y9) and 1500 meters (Y10). The factor analysis 

results for the given dataset and the results under various level of contamination (2%, 5%, 10% and 20%) of the data are 

displayed in the tables 3 to 7 which are given in the appendix. It is observed from the factor analysis results, for the given 

dataset there are three factors are extracted by the classical and robust procedures. Table 3 indicates that almost all the 

procedures classified the factor along with variables are same. The robust procedure gives the same results. Factor 1 

contains 3 variables; they are 100 meters (Y1), 110 hurdles (Y6) and 400 meter (Y5). Factor 2 contains six variables like 

Long jump (Y2), Shot-put (Y3), High jump (Y4), Discuss throw (Y7), Pole vault (Y8) and Javelin throw (Y9). Factor 3 

has only one variable, 1500 meters (Y10) running. Three factors can be named as sprints, field events and middle 

distance respectively. The results based on various levels of contamination of data are displayed in the tables 4 to 7. It is 

observed that the classical procedure doesn’t extract the same variables along with factors. The contamination level was 

increased the classical procedure doesn’t to classify the variables in a correct manner. The robust procedures, MCD and 

MVE are classified the variables in the factors in a meaningful way up to 35% of the contamination level, since these two 

procedures based on robust distance. But S and MM robust procedures tolerate up to some lower level of contamination 

of the data, because these two procedures are based on the magnitude of the Mahalonobis distance. 

 

CONCLUSION 
Robust location and scatter estimators find numerous applications to multivariate data analysis and inference in turn its 

play an important role in many areas such as pattern recognition, telecommunication applications, signal processing and 

computer vision tasks. In this context, this paper proposed to construct factor analysis with the help of most widely used 

robust estimators MVE, S and MM that can resist the effect of contaminated data. It is observed from the proposed factor 

analysis results, the classical procedure and robust procedures extract the same variables along with factors. The 

contamination level was increased the classical procedure doesn’t classify the variables in the correct manner with a 

factor. The robust procedures can tolerate some level of contaminated data. 
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Appendix 

Table 1: Factor Loadings 

Variables Classical MCD MVE S MM 

X1 -0.2432 -0.8500 -0.1042 0.9920 -0.1365 0.8653 -0.2193 0.9731 -0.2298 0.9707 

X2 0.8773 0.3871 0.8469 -0.2348 0.9434 -0.1374 0.9301 -0.2825 0.9213 -0.3005 

X3 0.7618 0.5930 0.7758 -0.4101 0.8019 -0.5933 0.8424 -0.4682 0.8266 -0.4922 

X4 -0.7978 -0.2786 -0.8705 0.1262 -0.8491 0.1706 -0.8678 0.1489 -0.8487 0.1777 

X5 0.9692 0.2129 0.9635 -0.0847 0.9728 -0.2210 0.9724 -0.1864 0.9698 -0.1829 

Variance 

Explained 
99.7554 99.9616 99.7670 99.9084 99.9165 99.9835 99.8652 99.9769 99.8300 99.9727 

 

Table 2: Factor Loadings (with 2% contamination) 

Variables Classical MCD MVE S MM 

X1 -0.1915 0.9789 -0.1123 0.9875 -0.1363 0.8650 -0.2247 0.9719 -0.2394 0.9684 

X2 0.8014 -0.1691 0.8445 -0.2352 0.9423 -0.1376 0.9284 -0.2887 0.9190 -0.3103 

X3 0.5682 -0.2115 0.7763 -0.4098 0.8013 -0.5929 0.8448 -0.4649 0.8284 -0.4893 

X4 -0.1316 0.0236 -0.8725 0.1260 -0.8489 0.1700 -0.8692 0.1607 -0.8497 0.1917 

X5 0.9399 -0.1128 0.9693 -0.0823 0.9725 -0.2213 0.9724 -0.1815 0.9690 -0.1840 

Variance 

Explained 
98.6157 99.3428 99.8607 99.9719 99.9006 99.9908 99.8593 99.9773 99.8263 99.9734 
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Table 3: Factor Loadings (Olympic Decathlon Data) 

Events 
Factor Analysis (FA) MCD based FA MVE based FA S based FA MM based FA 

Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 

100 meters 0.7838 -0.0559 0.0708 0.7758 -0.1569 0.0462 0.7821 -0.0855 0.0624 0.7758 -0.157 0.0462 0.7821 -0.0855 0.0624 

Long jump -0.6091 0.0502 -0.2622 -0.5035 0.2072 -0.1241 -0.6132 0.089 -0.2022 -0.5035 0.2072 -0.1241 -0.6132 0.089 -0.2022 

Shot-put -0.2062 0.9687 0.1189 -0.1557 0.9732 0.1541 -0.1808 0.9684 0.1566 -0.1557 0.9732 0.1541 -0.1808 0.9684 0.1566 

High jump -0.2525 0.0827 -0.0691 -0.288 0.0204 -0.0313 -0.2629 0.0217 -0.0341 -0.2881 0.0204 -0.0313 -0.2629 0.0217 -0.0341 

400 meters 0.7236 0.205 0.3746 0.7047 0.085 0.3106 0.7156 0.1922 0.3559 0.7047 0.085 0.3106 0.7156 0.1922 0.3559 

110 hurdles 0.826 -0.1223 -0.0515 0.7286 -0.3996 -0.1412 0.8069 -0.1939 -0.0462 0.7286 -0.3996 -0.1412 0.8069 -0.1939 -0.0462 

Discusthrow -0.0674 0.7852 0.2645 -0.1944 0.734 0.3245 -0.0928 0.7492 0.34 -0.1944 0.734 0.3245 -0.0928 0.7492 0.34 

Pole vault -0.5437 0.376 0.0319 -0.5566 0.4249 0.012 -0.5645 0.3869 0.0003 -0.5566 0.425 0.012 -0.5645 0.3869 0.0003 

Javelin -0.0305 0.6143 -0.0324 -0.0901 0.5883 -0.1457 -0.0311 0.6273 -0.0775 -0.0901 0.5883 -0.1457 -0.0311 0.6273 -0.0775 

1500 meter 0.2644 0.2189 0.9366 0.2197 0.0977 0.9681 0.2613 0.1712 0.9473 0.2197 0.0977 0.9681 0.2613 0.1712 0.9473 

Variance 81.1567 95.5540 99.2999 84.4668 96.3167 99.4672 81.8294 93.2335 99.3417 81.5071 96.2013 99.3272 81.3661 96.0465 99.3277 

 
Table 4: Factor Loadings (Olympic Decathlon with 2% contamination) 

Events 
Factor Analysis (FA) MCD based FA MVE based FA S based FA MM based FA 

Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 

100 meters 0.8205 0.3949 -0.4014 -0.2414 0.4735 -0.3606 -0.0595 0.765 -0.3529 0.7841 -0.1998 0.0159 0.7815 -0.1475 0.0391 

Long jump 0.5049 0.7401 -0.1745 0.2186 -0.5142 -0.1136 0.3154 -0.164 0.8423 -0.5138 0.2044 -0.1532 -0.6111 0.1021 -0.2169 

Shot-put -0.0226 -0.1777 0.9813 0.8414 -0.0454 0.0635 0.9836 0.0689 0.151 -0.1103 0.9829 0.1291 -0.135 0.9746 0.1641 

High jump 0.7844 0.5068 -0.3511 -0.0118 0.0053 0.9974 -0.0414 -0.4912 0.0982 -0.3905 -0.0428 -0.0718 -0.3562 -0.0716 -0.0718 

400 meters -0.5246 -0.7583 0.3015 -0.0905 0.7889 -0.0167 0.2292 0.4972 -0.4495 0.701 0.0346 0.2976 0.7227 0.1188 0.345 

110 hurdles -0.7314 -0.6086 0.2744 -0.6019 0.4717 -0.3033 -0.4414 0.8872 0.1142 0.7165 -0.4397 -0.161 0.7994 -0.2643 -0.0698 

Discusthrow 0.8785 0.3994 0.0079 0.9777 -0.0391 -0.1277 0.8114 -0.1323 0.0499 -0.1399 0.7396 0.306 -0.0546 0.7337 0.3559 

Pole vault 0.64 0.6301 0.006 0.697 -0.6181 0.2597 0.4841 0.0191 0.5702 -0.5296 0.4562 0.016 -0.5406 0.4273 0.0136 

Javelin 0.7517 0.3797 0.0729 0.3714 -0.279 0.0313 0.3568 -0.078 0.4333 -0.0699 0.5745 -0.2109 -0.0136 0.6099 -0.1348 

1500 meter -0.3972 -0.6727 0.3737 0.4136 0.5829 -0.2243 0.0911 0.2005 -0.5277 0.2513 0.0873 0.9614 0.2803 0.121 0.9496 

Variance 86.1194 97.1504 99.4150 83.4165 96.1903 99.4219 77.1010 93.8564 99.2590 82.6629 95.6706 99.2971 82.6728 96.0101 99.2980 

 

Table 5: Factor Loadings (Olympic Decathlon with 5% contamination) 

Events 
Factor Analysis (FA) MCD based FA MVE based FA S based FA MM based FA 

Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 

100 meters 0.8691 0.4904 -0.0368 -0.1134 0.6706 -0.446 0.7009 0.0745 -0.1521 0.714 -0.1453 0.1199 0.746 -0.1148 0.0475 

Long jump 0.034 -0.9376 -0.0061 0.0085 -0.0837 0.9939 -0.9683 0.2066 0.121 -0.5537 0.0722 -0.2461 -0.6033 0.0232 -0.1823 

Shot-put 0.2043 0.6938 0.687 0.7946 -0.207 0.1527 0.0792 0.9217 0.2438 -0.16 0.9496 0.2603 -0.1346 0.9674 0.2028 

High jump 0.9909 0.1102 -0.0458 -0.1698 -0.5626 -0.2637 -0.1573 -0.0794 0.3571 -0.4296 -0.1194 -0.022 -0.3625 -0.0728 -0.0572 

400 meters -0.9393 -0.2168 0.058 -0.1127 0.5899 -0.238 0.772 0.3198 0.112 0.6378 0.091 0.4087 0.6843 0.1404 0.3583 

110 hurdles 0.3713 0.926 -0.0059 -0.499 0.7301 -0.199 0.7299 -0.0608 -0.5644 0.896 -0.274 -0.07 0.8725 -0.2488 -0.0418 

Discusthrow 0.9514 0.0341 0.2143 0.9811 0.0066 0.1799 0.3661 0.7957 0.002 -0.1005 0.6783 0.4514 -0.044 0.7214 0.3867 

Pole vault 0.9208 0.2292 0.1209 0.5999 -0.5205 0.3723 0.0137 0.2088 0.7707 -0.5742 0.3746 0.0696 -0.5612 0.3732 0.0861 

Javelin 0.7529 -0.2732 0.3037 0.2314 -0.1391 0.495 -0.1848 0.711 -0.0354 0.0041 0.6482 -0.1747 0.0104 0.6254 -0.1195 

1500 meter 0.0679 0.9026 0.1618 0.4474 0.3793 -0.0955 0.5254 0.3973 0.5088 0.2044 0.0952 0.849 0.2432 0.1428 0.9568 

Variance 80.4564 97.0798 98.8565 83.4165 96.1903 99.4219 84.7222 97.2415 99.3698 82.3514 96.0679 99.2817 82.1740 96.0542 99.2839 

 

Table 6: Factor Loadings (Olympic Decathlon Data with 10% contamination) 

Events 
Factor Analysis (FA) MCD based FA MVE based FA S based FA MM based FA 

Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 

100 meters 0.7361 -0.3822 0.5524 -0.368 0.5799 -0.277 -0.2318 0.5912 -0.1555 -0.2225 0.5179 -0.5 -0.1912 0.5074 0.5032 

Long jump 0.7453 0.6567 -0.0964 0.3318 -0.3094 -0.1297 0.2108 -0.342 0.4974 0.0479 -0.3829 0.4195 0.0512 -0.5132 -0.376 

Shot-put 0.5685 0.3777 0.5458 0.9156 0.0848 0.045 0.8488 0.1056 -0.0811 0.9814 0.0923 0.1529 0.9697 0.1317 -0.1931 

High jump 0.7939 0.5988 0.0904 0.0358 -0.0801 0.9936 -0.361 -0.0137 0.9298 -0.1654 0.0762 0.5981 -0.087 -0.0244 -0.3984 

400 meters 0.0213 0.9655 -0.1713 -0.0789 0.8983 0.0934 0.1624 0.9667 -0.1848 0.0746 0.9735 -0.2041 0.1087 0.8037 0.3187 

110 hurdles 0.1814 -0.2353 0.9522 -0.7241 0.4288 -0.2334 -0.2806 0.4521 -0.7347 -0.3069 0.3708 -0.8195 -0.2071 0.319 0.9222 

Discusthrow 0.9281 -0.219 0.135 0.8924 0.0512 -0.155 0.8601 0.1804 -0.1059 0.7578 0.1253 0.0599 0.7476 0.2438 -0.0943 

Pole vault 0.2253 -0.9054 0.2403 0.7077 -0.491 0.2327 0.353 -0.2705 0.2487 0.3807 -0.2575 0.4866 0.3626 -0.2238 -0.4876 

Javelin 0.8603 -0.0587 -0.1298 0.5753 -0.0169 0.0461 0.6793 -0.2356 0.2279 0.5972 0.0034 -0.0177 0.6408 -0.0837 0.0811 

1500 meter -0.1942 -0.168 0.8788 0.2406 0.5842 -0.1573 0.1494 0.7846 -0.1483 0.1976 0.5636 -0.0196 0.1798 0.6937 -0.0106 

Variance 61.8370 90.3361 97.9152 82.3887 96.4301 99.3959 83.0026 94.8756 99.2213 81.4511 96.1185 99.2509 81.1121 95.9612 99.2627 

 

Table 7: Factor Loadings (Olympic Decathlon Data with 20% contamination) 

Events 
Factor Analysis (FA) MCD based FA MVE based FA S based FA MM based FA 

Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3 

100 meters 0.2271 0.8423 -0.4837 -0.2234 0.9354 -0.2649 0.8059 0.3505 -0.0737 -0.2663 0.5838 0.4644 -0.2674 0.5714 0.4694 

Long jump 0.9853 -0.1188 -0.1014 0.137 -0.1943 0.9688 -0.6051 0.1176 -0.6585 0.1217 -0.4522 -0.3132 0.1145 -0.4662 -0.3251 

Shot-put 0.1059 0.5656 0.0908 0.9565 -0.009 0.0839 0.1025 0.9868 -0.1037 0.9926 0.0527 -0.083 0.9926 0.0557 -0.0818 

High jump 0.9876 0.1088 0.0917 0.0787 -0.3484 -0.2228 -0.4041 0.3754 -0.1362 -0.1511 -0.0443 -0.6251 -0.1543 -0.0524 -0.6231 

400 meters 0.2 -0.2014 0.9312 -0.0237 0.6634 -0.0491 0.6612 0.1519 0.3208 0.0114 0.8166 0.2644 0.0099 0.7997 0.283 

110 hurdles -0.0665 0.9208 0.1358 -0.7479 0.5535 -0.0401 0.7661 -0.3027 -0.0439 -0.4866 0.2557 0.8324 -0.4821 0.2486 0.8372 

Discusthrow 0.5356 0.4535 -0.2864 0.7961 0.1123 0.0851 0.0544 0.7432 0.0315 0.7406 0.1834 -0.0854 0.7396 0.1996 -0.0792 

Pole vault -0.3136 0.5604 -0.008 0.6185 -0.204 0.1709 -0.1932 0.3917 0.3471 0.4819 -0.1615 -0.3935 0.4814 -0.1468 -0.3973 

Javelin 0.5483 -0.0373 0.0398 0.4957 0.0084 0.563 -0.112 0.2834 -0.5158 0.5498 -0.1753 0.0652 0.5479 -0.1896 0.0607 

1500 meter -0.2032 0.4102 0.8863 0.1865 0.2656 -0.1161 0.0358 0.1903 0.967 0.0996 0.6348 -0.1138 0.1026 0.655 -0.109 

Variance 83.7221 91.3759 96.69.06 79.8832 95.2993 99.2132 66.8015 89.2205 98.8539 81.1217 95.4153 99.1854 81.1973 95.3950 99.1796 
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