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INTRODUCTION 
More recently, qualitative phase-space approaches have been introduced [Lee 

simulation, these techniques explore trajectories in phase space, showing how the qualitative values in a system will 

change from any point in the space. Similar to the phase

Stewart 86), these techniques are strong at indicating convergence, stability, etc. But weaker at explicitly describing t

temporal behaviour of the values. Such qualitative solutions to differential

First, if an exact solution can indicate the types of 

Also, for complex equations where an exact solution is known, it may be so complex as to not be comprehensible 

solution may be preferable for obtaining an intuitive understanding of system 

descriptions of behaviour are covered further in (Yip 88). We should recognize that some 

concerning the stability and boundedness of solutions third order nonlinear differential equations with delay have been 

achieved, see for example the papers of Sadek

papers. It should be noted that, in 1969, Palusins

Lyapunov function for third order ordinary nonlinear differential equation of the form:

 �'''+a1 x'' � ���� ′�� ′ � ��� 	 0 
They found some conditions for the stability of zero solution of 

�� � 0, ���� ′� � �� � 0. 
 

In this paper we are concerned with the third ordinary nonlinear delay differential equations of the type

 �"′��� � ���"(t)+����'(t-r(t))+���
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space approaches have been introduced [Lee and Kuipers 88, Sacks 87]. Augmenting 

simulation, these techniques explore trajectories in phase space, showing how the qualitative values in a system will 

change from any point in the space. Similar to the phase-space methods used in quantitative analysis (T

at indicating convergence, stability, etc. But weaker at explicitly describing t

ues. Such qualitative solutions to differential equations are desirable for severa

if an exact solution can indicate the types of behaviour that are possible, augmenting numerical simulation results. 

Also, for complex equations where an exact solution is known, it may be so complex as to not be comprehensible 

ferable for obtaining an intuitive understanding of system behaviour. The advantages of qualitative 

are covered further in (Yip 88). We should recognize that some significant

dness of solutions third order nonlinear differential equations with delay have been 

Sadek
5
, Tejumola and Tchegnani

6
, Tunc

7,8 
Zhu

9
 and the references citied in these 

papers. It should be noted that, in 1969, Palusinski et al.
10

 applied an energy metric algorithm for the generation of a 

Lyapunov function for third order ordinary nonlinear differential equation of the form: 

They found some conditions for the stability of zero solution of this equation as follows: 

In this paper we are concerned with the third ordinary nonlinear delay differential equations of the type

���� 	 ���, ����, ����, ��������, �'(t-r(t)),�"(t)) →(1) 
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or its equivalent system 

�'(t)=y(t), � ′(t)=z(t), 

 � ′��� 	  −������ − �������� − ������ � � ��′������������
�

������
 

 ��(t,x(t), y(t), x(t-r(t)), y(t-r(t)),z(t)), 

where r is a bonded delay, 0≤ ���� ≤  , � ′��� ≤ !, 0 < ! < 1,  
! �$�   are some positive constants   which will be determined later;  

�� �$� �� are some positive constants; the functions f2 and � depend only on the arguments displayed explicitly and the 

primes in equation (1) denote differentiations with respect to � 
 

THEOREM 
In addition to the basic assumptions imposed on the functions f2 and p that appeared in equation. 

x"′�t� � a�x"�t� � f��x′�t − r�t�� � a�x�t� 	 

P +t, x�t�, x′�t�, x�t − r�t��, x′�t − r�t��, x"�t�,  → �A�  

We assume that there are positive Constants , a� , a�, a�, ε/, L, µ HandH�, such that the Condition satis<ied for x, y, z in 

Ω: = {( x, y, z) Є R
 3

:|x|< H1, |y|<H1,|z|<H1, H1<H } 

1. a� , a�, −a� � 0,  f��0� 	 0, ?@�A�
A − a� �,  ε/, �y ≠ 0� and |f���y�| ≤ L 

2. | p(t, x (t), y(t) , x(t-r(t)), y(t-r(t)), z(t)| ≤ q(t), 

Where  max q�t� < ∞ and G HL��0, ∞� 

The space of integrable lebesgue function than there exist a <inite positive Constant k� such  
that the solution x�t�of equation �A�di<ined by the initial functions. 
 x�t� 	  ∅�t�, x��t� 	 ∅′�t�, x"�t� 	 ∅"�t� 

Satisties the in equalities 

 |x�t�| ≤ k�, |x′�t�| ≤ k�,|x"�t�| ≤ k� 

For all t ≥ t0, where Ø Є c
2
([t0-r,t0],R) 

Provided that  

γ < min R�εS
T  , ��UVU@�UW�

U@TX�µ
Y 

 

Proof: see [13,PP84]. If f(t, ∅) in x= f(t, x(t)), 

xt (ө)= x(t+ө), - r ≤ө ≤ 0 ,t ≥0 is continuous in t, ø, for every ØЄC H,H1<H andt/ ,0≤ t/ <c, where C is (+)ve Constant 

then there exist a solution with initial value Ø at t= t0 and this solution continues for t>t0, Now. The proof of this theorem 

also depends on the Scalar. Differentiable lyapunov functional V=V (x(t), y(t), z(t)) defined in 

V(x(t),y(t),z(t)) = 
�
� a��x� � a�a�xy � �

� a�z� � a�yz �  

 a2Z f��ξ� dξ � A
/

�
�  a� a�y� � µ Z , Z z�[

[X\
/

�]�[� (ө) dө d s 

Now since, P�t, x�t�, y�t�, x�t − r�t��, y�t − r�t�, z�t�� ≠  0 in view of 
Z’(t) = -a� z(t) – f2(y(t)) - a�x(t)+ Z f���y�s�z�s���ds � p�t, x�t�, y�t�, x�t − r�t��, y�t − r�t��, z�t��[

[�]�[�  and 

 
`
`[ v�x�t�, y�t�, z�t�� ≤ - ∝ y� − ρz�   

It can be satisfies following inequality. 
`
`[ V�x�t�, y�t�, z�t�� ≤ −∝ y� − ρz� � |a�y � a�z|. |P +t, x�t�, y�t�, x�t − r�t��, y�t − r�t��, y�t�, |  
 ≤ - ∝ y� − ρz� -|a�y � a�z |q�t� Hence it follows that  
 `
`[ V�x�t�, y�t�, z�t� ≤ - ∝ y� − ρz� � D��|y| � |z|�q�t� 

 Hence if follows that 
`
`[ V�x�t�, y�t�, z�t�� ≤ D��|y| � |z|�q�t�  

for a Constant D� � 0 dℎf�f, D� 	 maxg1, a��h 

making use of inequalities 

|y| < 1 � y� and |z| < 1 � z�  
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 it is clear that  
`
`[ V�x�t�, y�t�, z�t�� ≤ �|y| � a��|z|�q�t�  

 ≤ D��|y| � |z|�q�t� 

 ≤ D��2 � y� � z��q�t� 

we know  
V�x�t�, y�t�, z�t�� ≥ D� �x� � y� � z��  → �1� 

we ℎ�kf,  
 ��� � �� � ��� ≤ l���m�����, ����, ����� 

ℎf$nf,  
 

o
o� m�����, ����, ����� ≤ l��2 � l���m�����, ����, �����G��� 

 
o
o� m�����, ����, ����� ≤ 2l�G��� � l�l���m�����, ����, �����G��� 

pqd, r$�fs���r$s �ℎf t��� r$fGu�tr�� ��qv 0 �q � u�r$s �ℎf ���uv��rq$ GHw�0, ∞� and  
 x�q$d�tt − yfr� − zfttv�$ r$fGu�tr�� df q{��r$ 

 m�����, ����, ����� ≤ m�0,0,0� � 2l�| � l�l��� Z �m�����, ����, �����G������
/   

 ≤ m�0,0,0� � 2l�|�f�� �l�l��� Z G�������
/  

 ≤ m�0,0,0� � 2l�|� f���l�l��� |� 	 }� < ∞ → �2� 

  dℎf�f }� � 0 r� � nq$���$� 

 }� 	 �m�0,0,0� � 2l�|� f���l�l��� |� 

�$� E=Z G�����∞

/   
pqd �ℎf r$fGu�tr�rf� �1 �and�2� 
We get   

����� − ����� � ����� ≤ l���m�����, ����, ���� ≤ }� 

~ℎf�f,}� 	 }� l��� 

df �q$ntu�f �ℎ�� 

 |����| ≤ }�, |����| ≤ }�, |����| ≤ }� 

 �q� �tt � ≥ �/ 

�f$nf, 
|����| ≤ }�, |� ′���| ≤ }�, |�"��� ≤ }� 

�q� �tt � ≥ �/ 

�ℎu� �ℎf ��qq� q� �ℎfq�fv r� $qd �qv�tf�f. 
 �������. 
nq$�r�f� �ℎf �ℎr�� q��f� $q$tr$f�� �ft�� �r��f�f$�r�t fGu��rq$. 
 �'(t)+[x2 (t)+x'(t)+4]x" ��� � 8� ′�� − ����� 

 � �r$ � ′ �� − ����� � ��� − ����
1 � ���� − �����  → �1� 

 = 
�

�X�@X�@���X�′@���X�@��������X�′@ ��������X�′′@��� 
q� r�� fGurk�tf$� ����fv �q�v  
 �' 	 �, 
 � ′ 	 �, 
 � ′ 	  −��� � � � 4�� − �8� � �r$�� − �

1 � �� 

 � Z �8 � nq� � �������� � Z ������
��X�@����@ �������

������
�

���  

 � 4
1 � �� � �� � �� � ���� − ����� � ���� − ����� � ����� 

q{�f�kf �ℎ��  
 

�
�X�@X�@X�@X�@��������X�@��������X�@ ≤ �

�X�@ 	 G��� 

�q� �tt �ЄyX, �, �, ��� − �����, ��� − �����, � �$� 
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Z G����� 	 Z �
�X�@

∞

/
∞

/  ds = � < ∞, �ℎ�� r� GHw��0, ∞� 

�q �ℎqd �ℎf {qu$�f�$f�� q� �qtu�rq$� df u�f �� � v�r$ �qqt �ℎf  
w���u$qk �u$n�rq$�t $qd, r$ krfd �ℎf trvf �f�rk��rkf q� �ℎf  
�u$n�rq$�t m����, ����, �����dr�ℎ �f��fn� �q �ℎf ����fv n�$ {f �fkr�f� ��  
�qttqd�: �

�� m����, ����, ����� ≤ 

−k�� − ��� � � � ����
1 � �� � �� � �� � ���� − ����� � ���� − ����� � �� 

��}r$s u�f q� �ℎf ��n� 

 
�

�X�@X�@X�@X�@��������X�@��������X�@ ≤ �
�X�@ 

 df sf�   

 
o
o�  m ����, ����, �����  ≤ −m�� − ��� � �|�X��V�|

�X�@   

�f$nf r� r� q{krqu� �ℎ�� 

 
o
o�  m ����, ����, �����  ≤ �|�X�|

�X�@ ≤ �|�|X|�|
�X�@  

 ≤ ���X�@X�@�
�X�@ 	 �

�X�@ � ���@X�@�
�X�@  → �2� 

 ≤ �
�X�@ � ��V�V

�X�@ m ����, ����, ����� pqd, r$�fs���r$s �2���qv 0 �q �� u�r$s �ℎf ��n� �
�X�@  Hw��0, ∞��$� 

�$�x�q$d�tt − yfr� − zfttv�$ r$fGu�tr��, r� n�n {f f��rt�  
nq$ntu�f� �ℎf {qu$�f�$f�� q� �tt �qtu�rq$� q� �1�. 
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