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INTRODUCTION 
The Lyapunov function or functional approach has been a powerful tool to ascertain the stability of solutions of certain 

differential equations. Up to today, perhaps, the most effective method to determine the stability of solutions of non

linear differential equations is still the Lyapunov’s direct (or second) method. The major advantage of this method is that 

the stability of solutions can be obtained without any prior knowledge of solutions. 

 For over four decades many authors made use of the Lyapunov’s

obtained the conditions which ensure the stability of the problem, But how do we construct those appropriate Lyapuncv 

functional? No author has discussed them thus far. It is in general a difficult task

ordinary differential equations of high orders[6].

We consider the third order non – autonomous nonlinear different equations with delays:

 x′′′ �and  x′′′ � p
Where r is a positive constant, p(t), q(t),n(x), m(x) are real valued functions continuous in their respective arguments; 

n(0) = m(0)= 0. The dots indicates differential with respect to t and all solutions are assumed real. 

 Equations of the forms above equations in which p

namely, Sadek [5] and Zhu[13], to mention a few . They obtained criteria which ensure the stability 
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Recently, in [6] , SADEK establishes conditions under which all solutions of the non- autonomus equation x′′′ � p�t
x′′ � q�t
n�x′
 � m�x�t 
 r
 � 0  
3.PreliminariesNow we will give the de�initions and the stability criteria for the general non 
autonmcus delay differentail system. x# � f�t, x%
, x% � x�t � θ
, 
r ≤ θ ≤ 0, t ≥ 0 
 3.1 

 where f: I × C. → R1is a continuos mapping. 
        f�t, 0
 � 0, C. � {∅ ∈ �c5
r, 06, R1
: ||∅|| ≤ H  and forH9, there exists L�H9
 > 0, <=>ℎ |f|∅| ≤ L�H9
when ||∅|| ≤ H9. @ABCDCECFD G. H ∶ An element ψ ϵCis in the ω 
 limit set of ∅, say, Ω�∅
is de�ined on 50, ∞
and there is a sequence {t1K, t1 → ∞, as n → ∞, with L|x%1�∅
 
 ψ|L → 0 as n → ∞ where x%1�∅
 � x�t1 � θ, 0, ∅
for 
 r ≤ θ ≤ 0. @ABCDCEFDG. M: A set ⊂ C.is an invariant set if for any ∅ϵQ, the solution of �3.1
, x�t, 0, ∅
isde�ined  on 50, ∞
and x%�∅
ϵQfor t ϵ50, ∞
6 PAQQR G. H. If ∅ϵC. is such that the solution x%�∅
of�3.1
with xS�∅
 � ∅ is de�ined on 50, ∞
and L|x%�∅
|L ≤ H9for tϵ50, ∞
, thenΩ�ϕ
isa non 
 empty, compact, invariant set and dist Tx%�ϕ
U, Ω�ϕ

 → ∞as t → ∞. 6 De�initon: Stability and Boundedness of Solutions ofDelay Differential Equations third order PAQQRG. M. Let ∨ �t, ∅
: I × C. → R be a continous functional satisfying a local Lipschitz condition ∨ �t, 0
 � 0, and such that: 

i. W9�|∅�0
|
 ≤∨ �t, ∅
 ≤ W]�||∅||
where W9�r
, W]�r
, are wedges 

ii.  ∨�^.9
 �t, ∅
 ≤ 0, for∅ϵC.. Then the Zero solution of �3.1
 is uniformly stable . If we de�ine ThenZ � a∅ϵC. : ∨�^.9
 �t, ∅
 � 0b, then the Zero solution �3.1
 is asympotically stable, provided that the lagest invariant set  in Z is Q � {0K 

 

MAIN RESULTS cdAFeAQ:  Suppose that p�t
, q�t
ϵC′�I
, mϵC′�R
and Nϵ C�R
& >ℎghg ijkl>=mk no>=hip  following Condition 

i. m�0
 � 0, q�r
r ≥ AS > 0, s ≠ 0 

ii. m′�x
 ≤ C  
iii. n�0
 � 0, 1�u
u  ≥ q > 0, p ≠ 0  
iv. 0 < A9 ≤ q�t
, 
L ≤ q′�t
 ≤ 0, t ϵ I 
v. 0 < w ≤ w�t
 ≤  L, tϵ I   then euery Solation , x � x�t
 of  x′′′ � p�t
x′′ � q�t
n�x′
 � m�x�t 
 r
 � 0 is uniform bounded and Satis�ies   x�t
 → 0, x′�t
 → 0, x"�t
 → 0∞ t → ∞ Praided   there exist ∝ Satisfysing z{ >∝> 9|  such that  

 vi. 9]   p′ �t
  ≤  A] < A9 �q
∝ c
 t ϵ I & } < min ~]��^��  , ���∝�� 
 

 �eFFB: 
 we write equation x′�t
 � y�t
 y′�t
 � z�t
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 z′�t
 � 
 p�t
z 
 q�t
z 
 q�t
n�y
 
 m�x
 � � m′Tx�s
Uy�s
 ds%
%��

 

 → �1
 it′s Lyapanou functional as  
∨ Tt, x�t
, y�t
, z�t
U � � m�s
ds�∝ q�t
 � n�s
ds�∝ m�x
yu

S
r

S
 

 � 12  p�t
y] � Z ∝ z] � yz � µ9 � � y]�θ
 d θ%
%��

S
��

ds � µ] � � z]�θ
dθ ds%
%��

S
��

  
→ �2
 we, can also, assume that 0 < A9 ≤ q�t
 ≤ L  lim%→∞

q�t
 � qS  A9 ≤ qS ≤ L → �3
  from �1
 we write ∨ �t, x�t
, y�t
, z�t
 

 � �� m�s
ds� ∝ q�t
 � n�s
ds�∝ m�x
 yu
S

r
S

�  
 � 12 5p�t
y] � yz�∝ z]6 � µ9 � � y]�θ
%

%��
 dθ � µ] � � z]�θ
dθ ds%

%��
S

��
S

��
 

 �  ∨9� 12 ∨]� µ9 � � y]�θ
%
%��

 dθ � µ] � � z]�θ
dθ ds%
%��

S
��

S
��

 

→ �4
 Now , we Consider,   ∨]� p�t
y] � yz�∝ z] 

 � p�t
 ~y] � u�|�%
 � ∝��
|�%
�  � p�t
5y � z2 p�t
6] � 14 p�t
 �4 ∝ p�t
 
 1
z] 

but ∝ p�t
 ≥∝ p ≥ 1 , since , ∝> 9|  , ∝ is positive, 4 ∝ p�t
 
 1 is positive thus, A^ > 0 

 ∨] ≥  12  A^ y]  � 12 A^ z]  → �5
 

 

 

Now,∨9� �� m�s
ds�∝ q�t
 � n�s
ds�∝ m�x
yu
S

r
S

�  
 

  ∨9� 5M�s
�∝ q�t
N�y
�∝ m�x
y6 
where , M�s
 � � m�s
ds &��y
 � � n�s
ds.u

S
r

S
 

 ∨9 ≥  A9 ~M�s
 � ∝2  q y]�∝ m�s
y� 
since, q�t
 ≥ 1, A9 > 0, n�y
y ≥ q > 0  
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⟹ N�y
 ≥ 12 q y] 

∴  12 52M�x
�∝ qy] �  2 ∝ m�x
y6 
�  12 �2M �x
� ∝ q y] � 2 ∝ m�x
6 � ∝q m]�x
 
 ∝q m]�x
� 
= 

9]  ~∝z  � q] y] �  2 mqym�x
 � m] �x
K �  2M�x
 
 ∝z  m] �x
�  
= 9 ]  ∝z  �qy � m �x

] � � 5 1 
 ∝zrS m′(s)] m(s) ds 

 ≥  � 5rS  1 
 ∝{z 6 m�s
ds  
 ≥  � A�m�s
ds where A� � 1 
 ∝ cq

r
S

 

   ≥  A� � m�s
dsrS  

   ≥  A� M�s
  → �6
 

where,  A� �  1 
 ∝ cq > 1 
 �qc� cb � 0  
since , q�r
r > AS > 0 ,we get ∨′ ≥  ������]  s]  → �7
  adding �4
, �5
, & �7
 we have . 

∨ Tt, x�t
U, y�t
, z�t

  ≥  ASA9A]2  x] � A4̂  y] � A4̂  z] � µ9 � � y]�θ
%
%��

 dθ � µ] � � z]�θ
dθ ds.%
%��

S
��

S
��

 

 ∨ Tt, x�t
U, y�t
, z�t

  ≥  D9x] � D]y] � D^z] ≥  D��x] � y] � z]
  where,  
  D� � min{D9,  D], D^K since � � y]�θ
%%��  dθds ≥ 0 & � � z]�θ
dθ ds ≥ 0%%��S��S��  Hence ,   we check ∨ Tt, x�t
U, y�t
, z�t

 satis�ies condition �I
 of lemma 2.2. from �1
& �2
 we obtain. 
 

  % ∨ �t, x%, y%, z%
 � ∝ q′�t
N�y
 � 9]  p′�t
y] 

    
 5q�t
 n�y
y
∝  m′�x
y] 
  ¡} y]6 
    
 5∝ p�t
 
 1 6z] � y � m′Tx�s
Uy�s
ds%%��  

   � ∝ z � m′Tx�s
U y�s
%%��  ds 
  µ � y]�s
ds %%��  → �8
 

 Since,  m′�x
  ≤ c , using 2|ab| ≤ a] � b] 

 we obtain ∝ z � m′Tx�s
U y�s
%%��  ds ≤ 9]  ∝ crz] � 9]  c � y]�s
ds %%��  

 ≤ 9]  L ∝ crz] � 9]  
& p � m′Tx�s
Uy�s
ds ≤%

%��
 c � y]�s
ds %

%��
 

     ≤ Lc � y]�s
ds %%��  

 
  % ∨ �t, x%, y%, z%
 ≤ ∝ q′�t
N�y
 � 9]  p′�t
y] 

    
 5q�t
 n�y
y
∝ m′�x
y] 
 µ ry]6 
    
 9]  52�∝ �p�t
 
  Larc 6z] � ~]̂  Lc 
 µ� � y]�s
ds %%��  → �9
  If y � 0 then q�t
, n�y
y
∝ m′�x
y] 
 µ ry] � 0   we can write  
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 5q�t
 n�y
y
∝ m′�x
y] 
 µ ry]6 �  ~q�t
 1�u
u 
∝ m′�x
 
 µ r� y] 

      ≥ 5q q�t

∝ c 
 µr6y]  � 5q�t
q
∝ c6y] 
 µry]  

      ≥ A95q
∝ c 
 A9�9µr6 y] Thus,  12 p′�t
y] 
 5q�t
 n�y
y
∝ m′�x
y] 
 µ ry]6 
 ≤  �12 p′�t
 
 A9�q
∝ c 
 A9�9µr�  y]   ≤  5A] 
 A9�q
∝ c
 � µr6 y] 

 ≤  
5A¤ 
 µr6y]  → �10
 
 where, A¤ � A95q
∝ c6 
 A] > 0 ¥p �4
 accoding �5
 ,p�t
 ≥∝ p > 1 

 thus 52�∝ �p�t
 
 1
 
 L ∝ rc 6z] ≥ �A¦ 
 L ∝ cr
z]  → �11
 wher, A¦ �∝ p 
 1 > 0 Substute�10
, �11
 into �9
,also, µ � 3 2§  LC we get,   %  ∨ Tt, x�t
U, y�t
, z�t

 ≤ ∝ q′�t
 � n�s
ds 
 �A¤ 
 ]̂  Lcr� y]uS  

      
 �A¦ 
 L ∝ cr
z]  → �12
 Since ,  q′�t
 ≤ 0 & � n�s
ds ≥ 0uS  ,∝  q′�t
 � n�s
ds ≤ 0 uS  since in �6
 ,M�x
�∝ N�y
�∝ m�x
y ≥  A�M�x
 ≥ 0  Thus,  
 

  %  ∨ Tt, x�t
U, y�t
, z�t

 ≤  
� A¤ 
 ]̂  Lcr
y]  
  �A¦ 
 L ∝ cr
z]  

 if r < min �2A¤3LC , A¤L ∝ C�  
we have, ddt  ∨ Tt, x�t
U, y�t
, z�t

 ≤  
β �y] � z]
, β > 0 

 by   %  ∨ Tt, x�t
U, y�t
, z�t

 � 0  system �1
we can easily obtain   x � y � z � 0 , Condition lemma �3.2
are satis�ied  ∴ ptoof is conplete. 
 

CONCLUSIONS 
 In this paper, we considered the third order non-autonomous non-linear differential equations with delays. The 

differential equations we have discussed in this paper in which p (t), q (t) are constants have been studied by several 

authors. They obtained criteria which ensure the stability of solutions. Sadek establishes conditions under which all 

solutions of the non-autonomous equation tend to the zero solution as t → ∞. These results are now extended by 

considering the semi-invariant set of a related non-autonomous system. 
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