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INTRODUCTION 
Progressive Type II right censored sampling is an important method of obtaining data in life

out by Aggarwala and Balakrishnan (1998), the scheme of progressive censoring enables us to use live units, removed 

early, in other tests. Balakrishnan and Sandhu (1996), by assuming a general progressive Type II right censored sample, 

derived the BLUE’s for the parameters of one

derived MLE’s and shown that they are simply the BLUE’s, adjusted for their bias.

progressive Type II right censoring scheme (Balakrishnan and Sandhu, 1996) : Suppose N randomly selected units were 

placed on a life test; the failure times of the first r units to fail were not observed ; at the time of the (r+1)

number of surviving units are withdrawn from the test randomly, and so on; at the time of the (r+i)

of surviving units are randomly withdrawn from the test ; finally, at the time of the n

– Rr+1 – Rr+2 – ... – Rn–1 are withdrawn from t

completely observed units to fail, and Rr+1

times, respectively. It follows that += nN
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Progressive Type II right censored sampling is an important method of obtaining data in life-testing studies. 

Aggarwala and Balakrishnan (1998), the scheme of progressive censoring enables us to use live units, removed 

early, in other tests. Balakrishnan and Sandhu (1996), by assuming a general progressive Type II right censored sample, 

he BLUE’s for the parameters of one-and two-parameter exponential distributions. For the later, they also 

derived MLE’s and shown that they are simply the BLUE’s, adjusted for their bias. Let us consider the following general 

oring scheme (Balakrishnan and Sandhu, 1996) : Suppose N randomly selected units were 

placed on a life test; the failure times of the first r units to fail were not observed ; at the time of the (r+1)

from the test randomly, and so on; at the time of the (r+i)

of surviving units are randomly withdrawn from the test ; finally, at the time of the n-th failure, the remaining R

are withdrawn from the test. Suppose Xr+1:N≤ Xr+2:N≤ .... ≤Xn:N are the life

r+1, Rr+2, ..., Rn are the number of units withdrawn from the test at these failure 
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testing studies. As pointed 

Aggarwala and Balakrishnan (1998), the scheme of progressive censoring enables us to use live units, removed 

early, in other tests. Balakrishnan and Sandhu (1996), by assuming a general progressive Type II right censored sample, 

parameter exponential distributions. For the later, they also 

Let us consider the following general 

oring scheme (Balakrishnan and Sandhu, 1996) : Suppose N randomly selected units were 

placed on a life test; the failure times of the first r units to fail were not observed ; at the time of the (r+1)
th

 failure, Rr+1 

from the test randomly, and so on; at the time of the (r+i)
th

 failure, Rr+i number 

th failure, the remaining Rn = N – n 

are the life-times of the 

are the number of units withdrawn from the test at these failure 
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If the failure times are from a continuous population with the pdf f and the distribution function F, then the joint pdf of ( 

Xr+1:N , Xr+2:N, .... , Xn:N) is given by 

gθ(xr+1,...,xn)=c[{Fθ(xr+1)}
r
X { }∏
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UNIFORM SCALE MODEL 
In this case the common pdf is taken as 

( )
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xf  

Thus (1.1) reduces to 
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Note that the joint distribution of ( )NnNr XX ::1 ,...,+  belongs to a scale family with the scale parameterτ . We are 

interested in estimating
mτ , m fixed, by considering three loss functions. Following Lehmann and Casella (1998) the 

MRE estimator of 
mτ is given by ( ) ( )
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invariant loss function. 

 

SQUARED ERROR LOSS FUNCTION 

If the loss function is of the form ( ) ( )21// −= mm τδτδγ then 
z
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NnXX =δ Clearly ( )X0δ is a 

scale equivalent estimator but not complete sufficient statistic. Since we are interested in the evaluation of conditional 

distribution under ,1=τ we take 1=τ in (2.1). In order to find ,*w consider the transformation Nnn XZ := and 

.1,...,2,1,/ :: −++== nrriXXZ NnNii Then nNn ZX =:  and 1,...,2,1,: −++== nrriZZX inNi and the 

Jacobian of the transformation is 
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Thus the conditional pdf of nZ  given ( )11,..., −+ nr ZZ is given by 



T Leo Alexander 

Copyright © 2015, Statperson Publications, International Journal of Statistika and Mathematika, ISSN: 2277- 2790 E-ISSN: 2249-8605, Volume 13 Issue 2                2015 

( )

( ) ( )

( ) ( )

)1.3...(10

,

11

11

,...,|

1

0

1

1

1

1

1

1

1

1

112

<<

−−

−−
=

∫
−

+=

−
+

−

+=

−
+

−+

n

n

R

in

n

ri

R

n

n

n

r

r

R

in

n

ri

R

n

n

n

r

r

nrn

z

dzzzzzz

zzzzz

zzzh

in

in

π

π
Now   

( )
( )zE

zE
w

|

|

01

2

01*

δ
δ

=  ,  

where ( )
( ) ( )

( ) ( )∫

∫

−−

−−

=
−

+=

−
+

−

+=

−+
+

1

0

1

1

1

1

1

0

1

1

12

1

2

01

11

11

|

n

R

in

n

ri

R

n

n

n

r

r

n

R

in

n

ri

R

n

nm

n

r

r

dzzzzzz

dzzzzzz

zE
in

in

π

π
δ ,       (3.2) 

in view of (3.1) and  

 ( )
( ) ( )

( ) ( )
,

dzzz1z1zz

dzzz1z1zz
z|E

1

0
n

iR

in

1n

1ri

nR

n

1n

n

r

1r

1

0
n

iR

in

1n

1ri

nR

n

1nm

n

r

1r

01

∫

∫

−π−

−π−
=δ −

+=

−
+

−

+=

−+
+

       (3.3) 

in view of (3.1). 

Therefore the MRE estimator of 
mτ is given by 
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in view of (3.2) and (3.3). 

Remark 3.1: The Pittman form of the MRE estimator of 
mτ  with respect to the squared error loss function is  
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ABSOLUTE ERROR LOSS FUNCTION 
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If the loss function in of the form ( ) ,/||/ ττδτδγ −=  then cw =*
is obtained by solving the following equation
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Therefore the MRE estimator of τ is given by ( ) ( )
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LINEX LOSS FUNCTION 
The scale invariant Linear loss function (Varian, 1975) given by 

( ) ( ) ( ) .11/; 1/ −−−= − τδδτ τδ aeL a
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Thus 
*w is to be obtained as the value of w minimizes ( ).|R zzzzδ  

Therefore the MRE estimator of τ is given by ( ) ./ *
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