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Abstract: In this paper we consider  an inverse  non linear 
algebraic ecological model (ݔ)݂  = ఓ ௫

ଵା(௔ ௫)್  with μ as control 
parameter and a,b are taken as constants. Here we create a 
suitable C-programming and use Mathematica software to study 
period doubling route to chaos. Also to find out an universal 
route from order to chaos through period doubling bifurcations 
we set up   proper numerical methods to get periodic points and 
bifurcation points of different period 2n, where 
n=0,1,2,3,4,5…..and we successively achieve Feigenbaum 
Universal  Constant(δ)=4.66920161029…  with the help of 
bifurcation points calculated numerically. It is also seen that 
chaotic region takes place beyond accumulation point. We also 
confirm about chaotic region by getting positive Lyapunov 
Exponent at some parametric values. 
Keywords: Period –Doubling Bifurcation, Periodic points, 
Feigenbaum Universal Constant, Time Series, Lyapunov 
Exponent. 
 

1.Introduction 
First-order difference equations, although simple and 
deterministic, can possess an extraordinarily rich 
spectrum of dynamical behaviour, from stable points, to 
a bifurcating hierarchy of stable cycles, to apparently 
random fluctuations[9].May and Oster[10] stated about 
the model in their paper in table 1,which is taken from 
biological literature[8,9,10,13,14] .Stone and 
Hart(1999)[12] showed  effect of immigration by 
adding a constant “c” on the model.In this paper we pay 
our attention to study period doubling route to chaos of 
an inverse non linear algebraic one dimensional model. 
We consider our model as ݂(ݔ) = ఓ ௫

ଵା(௔ ௫)್
  where a, b are 

constants and μ is the control parameter. Here we first 
provide the Feigenbaum tree of bifurcation points along 
with one of the periodic points, which leads to chaos. 
Secondly, we determine the accumulation point and 
draw the bifurcation graph of the model and verify that 
chaos occur beyond accumulation point. Thirdly the 
graphs of the time series analysis are confirmed in order 
to support our periodic orbits of period 20 
,21,22,23…..and lastly the graph of Lyapunov exponent 
confirms   about the existence of the chaotic region.[ 
4,5,6] 
 

2. Our vital study 
Here the model to be discussed is (ݔ)݂  = ఓ ௫

ଵା(௔ ௫)್
  

.Solving  ݂′(ݔ) = ݔ we get ,݋ = ଵ

௔(௕ିଵ)
భ
್
  .At this point we 

have ݂ (ݔ)′′ < 0 ,so maximum value for f(x) is  ఓ(௕ିଵ)భష
భ
್

ୟ ୠ
   

for μ>0 .We may take the range as[0, ఓ(௕ିଵ) భ ష భ್ 

ୟ ୠ
   ][ 6]  so 

as to keep it meaningful to ecological models although 
the main interest is mathematical. 
              The solution of ݂(ݔ) =  gives the fixed points ݔ
of f(x) .A fixed point x is said to be a (i) stable fixed 
point or attractor if   ห݂ ห(ݔ)′ < 1 (ii) unstable fixed point 
or repeller if   ห݂ ห(ݔ)′ > 1.Solving ݂(ݔ) = , ݔ we get the 

fixed points as ݔ = ݔ, 0 = (ିଵାఓ)
భ
್

௔
.Now at x=0 ,ห݂ ห(ݔ)′ =  ,ߤ

so x=0 becomes an unstable point for  ߤ > 1 . Also at x 

= (ିଵାఓ)
భ
್

௔
  , we get ݂ (ݔ)′ = ఓ(ଵି௕)ା௕

ఓ
                         

Also if we consider a= 0.5 ,b =7, then  at x = (ିଵାఓ)
భ
್

௔
  

(ݔ)′݂ , = ି଺ఓା଻
ఓ

 . 
 Now for  1< μ <1.4 , the absolute value of ݂   (ݔ)′
remains less than 1,and the point  is stable. As soon as 
μ>1.4 the point becomes unstable. Hence μ=1.4 is the 
1st bifurcation point of this model. 

 
Fig 2.1 Inersection of the model and f(x)=x.Here the abcissa 
represents x and ordinate represents f. 
 

We next consider the periodic points of period-two and 
higher.The period-2 points are found by solving the 
equation  ݂ଶ(ݔ) = ݔ  ,where ݂ଶ(ݔ) = ௫ఓమ

{ଵା(௔ ௫ )್}{ଵା൬ ೌ  ೣ  ഋ
భశ(ೌ  ೣ )್

൰
್

}
 

.Now to solve this equation  analytically is cumbersome 
one. So we use Newton-Raphson method and bisection 
method respectively. We build up suitable numerical 
method and obtain following bifurcation points of 
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different period ,one of the periodic point and 
Feigenbaum delta(experimental value). 

 
Fig2.2 Graphs of   ݂ଶ(ݔ) and  ݂(ݔ) =  ݔ

 

 
Fig2.3 Graphs of   ݂ସ(ݔ) and  ݂(ݔ) =  ݔ

   
For numerical procedure  first of all I(a,xi*,n) 
representing the nth  derivative of the function f at  each 
of the periodic points is calculated numerically and 
∏ I(a, x୧∗, n)௡
௜ୀଵ  is calculated. Now the interval [a0,a1] 

is choosen in such a way that  (∏ I(a଴, x୧∗, n)௡
௜ୀଵ +

1)(∏ I(aଵ, y∗, n) + 1௡
௜ୀଵ ) < 0  , where xi* are the 

periodic points at the parameter a0 and yi* are the 
periodic points at the parameter a1 for i=1,2,3…,n. Then  
(∏ I(a, z୧∗, n) + 1௡

௜ୀଵ )  is calculated where ݖ௜∗, ݅ =
1,2,3 … are the periodic points at the parameter 
a=(௔బା௔భ)

ଶ
 and the bisection method process is repeated 

till the bifurcation point up to certain accuracy is 
achieved. 
The following are some of the bifurcation points 
obtained with the above process.

 
 

Table 2.4:  Calculation  of  bifucation point. 

Bifurcation Point One of the 
periodic points 

Feigenbaum delta(experimental value) 
௡ߜ =

௡ߤ−௡ାଵߤ
௡ାଶߤ − ௡ାଵߤ

 

  ଵ =1.4000000000000 1.754613ߤ
ଶߤ =1.575706408457226540 1.445574  
ଷߤ =1.630043290746602260 1.299966 δ1=3.2336490321873926148761809179173 
ସߤ =1.642490397413339580 1.641840 δ2=4.3654227168332621823632156765309 
ହߤ =1.645204772722345780 1.653288 δ3=4.5856247827979005265651909953825 
଺ߤ =1.645788131573193260 1.655620 δ4=4.6530112726718142814428731693413 
 ଻ =1.645913168853051720 1.656095 δ5=4.6654794070763076560271607270146ߤ
଼ߤ = 1.6459399524105507 1.656115 δ6=4.6684343229566051115284344588563 
ଽߤ =1.645945688834907110 1.656113 δ7= 4.6690335015141436067738502435894 
ଵ଴ߤ  =1.645946917410687557 1.656118 δ8 = 4.6691660764490105476662516374799 
ଵଵߤ  =1.645947180534433301 1.656120 δ9 =4.6691938691170565445429865360879 
ଵଶߤ = 1.6459472368874952 1.652130 δ10=4.66915435884768187804365889581 
ଵଷߤ  =1.645947248956602490 1.655819 δ11= 4.6691988516575694472925677338974 
ଵସߤ  =1.645947251541439730 1.652396 δ12=4.6691942932546112963918513486693   

From the above table we can establish the Feigenbaum ߜ up to 4.6692011…..Now the following  bifurcation diagram 
indicates the universal  route to chaos  for our model .[6] 

 
Fig2.4 (a)Bifurcation graph of the model.The abcissa represents the control parameter and ordinate represents the iterated points. 

 

3. Accumulation point 
Using the experimental bifurcation points the sequence 
of accumulation points൛ߤ∞,௡   ൟis calculated with the help 

of the following formula.[6] 
௡.∞ߤ =

௡ାଵߤ − ௡ߤ
ߜ − 1 +  ௡ାଵߤ
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Table3.1: Accumulation points for different values of n 
µ∞, 1 =1.6235932315645944017782093800194 
µ∞, 2 =1.6458827180086068675824202456858 
µ∞, 3 = 1.6458827175932474774970325246657 
µ∞, 4 =1.6459445454569357623441342339104 
µ∞, 5= 1.6459471193308955094055767204584 
µ∞, 6= 1.6459472463699447144735582495296 
µ∞, 7= 1.6459472519706112002181189171387 
µ∞, 8= 1.6459472522334241941060516283839 
µ∞, 9= 1.6459472522453221547696101486903 
µ∞, 10= 1.6459472522458772854595187683096 
µ∞, 11= 1.6459472522458940791899784228632 
µ∞, 12= 1.6459472522459031531614616585986 
µ∞, 13= 1.6459472522459083077829755483082 
 

The above sequence converges to the value 
1.64594725224590...which is the required 
accumulation point. [6] 
 

4. Time Series Analysis: [4,6,15] The key 
theoretical tool used for quantifying chaotic behavior is 
the notion of a time-series of data for the system. By 
observing data over a period of time, one can easily 
understand what changes have taken place in the past. 
Such an analysis is extremely helpful in predicting the 
future dynamical behaviour.[5,15] 
       We open our journey with a couple of very simple 
time series experiments. On the horizontal axis, the 
number of iterations (time) is marked, while on the 
vertical axis the amplitudes (ranging from 1 to 3 ) are 
given for each iteration.   Figure 4.1 shows the 
computed time series of x- values starting at x = 1.4 
with the parameter value at μ = 1.35 (which is slightly 
smaller than  ߤଵ )  the points are connected by line 
segments. Time series graph is non-sensitive, stable 
behaviour and leads to the same final state of a single 
fixed point. 

 
                              No of iterations     

Fig 4.1: Time series graph for period 1 
  Now, let us look at the second time series in fig 4.2, 
which is based on the same formula and the same initial 
value of x with the parameter value μ = 1.5(which is 
slightly greater than  ߤଵ )  We notice periodicity and 
oscillate between two fixed points with the same 
amplitude, and the cycle repeats . 

 
                            No of iterations     

Fig 4.2: Time series graph for the period 2 
 

The third time series in fig 4.3, which is based on the 
same formula and the same initial value of x with the 
parameter value   μ = 1.637. We notice periodicity and 
oscillate between four fixed points with the same 
amplitude, and the cycle repeats. 

 
                    No of iterations     

Fig 4.3:  Time Series graph for the period 4. 
The fourth time series in fig 4.4, which is based on the 
same formula and the same initial value of x with the 
parameter value   μ = 1.637. We notice periodicity and 
oscillate between four fixed points with the same 
amplitude, and the cycle repeats. 

 
                    No of iterations     

Fig 4.4:  Time series graph for the period 8 behaviour 
 

But, if we start with the same initial value of x and the 
parameter value μ = 1.644, the picture shows an 
irregular pattern which is difficult to predict meaning 
thereby the appearance of the chaotic region, Fig 4.5. 
Thus, the time series analysis also helps us for full 
description of bifurcations and chaos for the concerned 
model. 
 

 
                    No of iterations     

Fig 4.5:  Time series graph for the Chaotic behaviour 
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5 .Lyapunov Exponent  
In order to verify how much accurate is the 
accumulation point, the lyapunov exponent is 
calculated. Lyapunov exponent at the parameter greater 
than the accumulation point is found to be positive 
whereas lyapunov exponent less than the accumulation 
point is negative and at the accumulation point it should 
be equal to zero. We begin by considering an attractor 
point x0  and calculate the Lyapunov exponent, which is 
the average of the sum of logarithm of the derivative of 
the function at the iteration points. 
The formula may be summarized as follows:[2,7] 
Lyapunov exponent (μ) = ଵ

௡
(log|f/(x0)|+ log|f/(x1)|+ 

log|f/(x2)|+ log|f/(x3)|+……+ log|f/(xn)|) 
From graph of  Lyapunov exponent ,we see that  some 
portion lie in the negative side of the parameter axis 
indicating regular behavior (periodic orbits) and  the 
portion lie on the positive side of the parameter axis  
confirm us about the existence of chaos for our model 
.[2] 

 
Fig:5.1  Lyapunov exponent of the map.Negative values indicate 

periodic.Almost zero values indicate bifurcation points and 
positive values indicate chaos. 
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