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Research Article

Abstract: In this paper we consider an inverse non linear

uwx
1+(a x)?
parameter and a,b are taken as constants. Here we create a
suitable C-programming and use Mathematica software to study
period doubling route to chaos. Also to find out an universal
route from order to chaos through period doubling bifurcations
we set up proper numerical methods to get periodic points and
bifurcation points of  different period 2",  where
n=0,1,2,3,4,5.....and we successively achieve Feigenbaum
Universal Constant(3)=4.66920161029... with the help of
bifurcation points calculated numerically. It is also seen that
chaotic region takes place beyond accumulation point. We also
confirm about chaotic region by getting positive Lyapunov
Exponent at some parametric values.

Keywords: Period —Doubling Bifurcation, Periodic points,
Feigenbaum Universal Constant, Time Series, Lyapunov
Exponent.

algebraic ecological model f(x) = with p as control

1.Introduction

First-order difference equations, although simple and
deterministic, can possess an extraordinarily rich
spectrum of dynamical behaviour, from stable points, to
a bifurcating hierarchy of stable cycles, to apparently
random fluctuations[9].May and Oster[10] stated about
the model in their paper in table 1,which is taken from
biological literature[8,9,10,13,14] .Stone and
Hart(1999)[12] showed effect of immigration by
adding a constant “c” on the model.In this paper we pay
our attention to study period doubling route to chaos of
an inverse non linear algebraic one dimensional model.

We consider our model as f(x) = Hé‘a—xx)b where a, b are

constants and p is the control parameter. Here we first
provide the Feigenbaum tree of bifurcation points along
with one of the periodic points, which leads to chaos.
Secondly, we determine the accumulation point and
draw the bifurcation graph of the model and verify that
chaos occur beyond accumulation point. Thirdly the
graphs of the time series analysis are confirmed in order
to support our periodic orbits of period 2°
,2'222° ._and lastly the graph of Lyapunov exponent
confirms about the existence of the chaotic region.|
4,5,6]

2. Our vital study

Here the model to be discussed is f(x) = —£=%

1+(a x)b

Solving f'(x) = o, we get x = —

r At this point we
a(b-1)b

-1
ub-1)"b

have f"(x) < 0,50 maximum value for f(x) is pye

for u>0 .We may take the range as[0, % 1[ 6] so
as to keep it meaningful to ecological models although
the main interest is mathematical.

The solution of f(x) = x gives the fixed points
of f(x) .A fixed point x is said to be a (i) stable fixed
point or attractor if |f'(x)| <1 (ii) unstable fixed point
or repeller if |f'(x)|>1.Solving f(x) = x,we get the

fixed points as x = 0,x = @.Now at x=0,|f' ()| =
so x=0 becomes an unstable point for x> 1. Also at x

1

I e et £(x) = ;4(1—:)+b

Also if we consider a= 0.5 ,b =7, then at x =%
’ _ —6u+7

) ==

Now for 1< p <1.4 , the absolute value of f'(x)

remains less than 1,and the point is stable. As soon as
pw>1.4 the point becomes unstable. Hence pu=1.4 is the
1* bifurcation point of this model.
4k _

o
T

I I I —]

1 2 3 4
Fig 2.1 Inersection of the model and f(x)=x.Here the abcissa
represents x and ordinate represents f.

We next consider the periodic points of period-two and
higher.The period-2 points are found by solving the
equation f2(x) = x ,where f2(x) = o .

(@) ))
.Now to solve this equation analytically is cumbersome
one. So we use Newton-Raphson method and bisection
method respectively. We build up suitable numerical
method and obtain following bifurcation points of
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different period ,one of the periodic point and
Feigenbaum delta(experimental value). For numerical procedure first of all I(a,x;*n)
I representing the nth derivative of the function fat each
of the periodic points is calculated numerically and
™ 1 1(a,x;",n) is calculated. Now the interval [ap,a;]
is choosen in such a way that ([, I1(ao, x;*,n) +
DAL, 1(a;,y,n) +1) <0 , where x* are the
L periodic points at the parameter a; and yi* are the
/ L periodic points at the parameter a, for i=1,2,3...,n. Then

. { 5 1 = (H?zll(a,zi*,n)+1). is. cal(fulated where z;%,i =
Fig2.2 Graphs of f?(x) and f(x) = x 1,2(:13;; ?re the periodic points at the parameter
q=totd)

and the bisection method process is repeated
‘ ’ till the bifurcation point up to certain accuracy is

achieved.
The following are some of the bifurcation points
obtained with the above process.

1 2 3 4
Fig2.3 Graphs of f*(x) and f(x) = x

Table 2.4: Calculation of bifucation point.

Feigenbaum delta(experimental value
Bifurcation Point O.ne.of th.e # _ lgn+l1)—.un )
periodic points Op=—""7""
Hni2 — Hnya
w; =1.4000000000000 1.754613
u, =1.575706408457226540 1.445574
13 =1.630043290746602260 1.299966 0,=3.2336490321873926148761809179173
Uy =1.642490397413339580 1.641840 0,=4.3654227168332621823632156765309
us =1.645204772722345780 1.653288 05=4.5856247827979005265651909953825
e =1.645788131573193260 1.655620 0,=4.6530112726718142814428731693413
1, =1.645913168853051720 1.656095 05=4.6654794070763076560271607270146
g = 1.6459399524105507 1.656115 06=4.6684343229566051115284344588563
Uy =1.645945688834907110 1.656113 7= 4.6690335015141436067738502435894
o =1.645946917410687557 1.656118 33 = 4.6691660764490105476662516374799
11 =1.645947180534433301 1.656120 09 =4.6691938691170565445429865360879
Hy, = 1.6459472368874952 1.652130 010=4.66915435884768187804365889581
Uz =1.645947248956602490 1.655819 511=4.6691988516575694472925677338974
i, =1.645947251541439730 1.652396 01,=4.6691942932546112963918513486693

From the above table we can establish the Feigenbaum & up to 4.6692011.....Now the following bifurcation diagram
indicates the universal route to chaos for our model .[6]

attractar
s

Fig2.4 (a)Bifurcation graph of the model.The abcissa represents the control parameter and ordinate represents the iterated points.

3. Accumulation point of the following formula.[6]
Using the experimental bifurcation points the sequence Upm = Mingl__lﬂn + Ui

of accumulation points{u,,, }is calculated with the help
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Table3.1: Accumulation points for different values of n
Koo, 1 =1.6235932315645944017782093800194
Koo, 2 =1.6458827180086068675824202456858
W, 3 = 1.6458827175932474774970325246657
Woo, 4 =1.6459445454569357623441342339104
Roo, 5= 1.6459471193308955094055767204584
Woo, 6= 1.6459472463699447144735582495296
R, 7= 1.6459472519706112002181189171387
Woo, 5= 1.6459472522334241941060516283839
Woo, o= 1.6459472522453221547696101486903
Woo, 10= 1.6459472522458772854595187683096
Roo, 11= 1.6459472522458940791899784228632
Roo, 12= 1.6459472522459031531614616585986
Roo, 13= 1.6459472522459083077829755483082

The above sequence converges to the value
1.64594725224590...which is the required
accumulation point. [6]

4. Time Series Analysis: [4,6,15] The key
theoretical tool used for quantifying chaotic behavior is
the notion of a time-series of data for the system. By
observing data over a period of time, one can easily
understand what changes have taken place in the past.
Such an analysis is extremely helpful in predicting the
future dynamical behaviour.[5,15]

We open our journey with a couple of very simple
time series experiments. On the horizontal axis, the
number of iterations (time) is marked, while on the
vertical axis the amplitudes (ranging from 1 to 3 ) are
given for each iteration. Figure 4.1 shows the
computed time series of x- values starting at x = 1.4
with the parameter value at p = 1.35 (which is slightly
smaller than p; ) the points are connected by line
segments. Time series graph is non-sensitive, stable
behaviour and leads to the same final state of a single
fixed point.

2.0

o 1‘0 2‘0 3‘0 4‘0
No of iterations —>
Fig 4.1: Time series graph for period 1

Now, let us look at the second time series in fig 4.2,
which is based on the same formula and the same initial
value of x with the parameter value p = 1.5(which is
slightly greater than p; ) We notice periodicity and
oscillate between two fixed points with the same
amplitude, and the cycle repeats .

0 10 20 30 40 50
No of iterations —>
Fig 4.2: Time series graph for the period 2

The third time series in fig 4.3, which is based on the
same formula and the same initial value of x with the
parameter value p = 1.637. We notice periodicity and
oscillate between four fixed points with the same
amplitude, and the cycle repeats.

3.0

10 20 30 a0 50

No of iterations —>
Fig 4.3: Time Series graph for the period 4.
The fourth time series in fig 4.4, which is based on the
same formula and the same initial value of x with the
parameter value p = 1.637. We notice periodicity and
oscillate between four fixed points with the same
amplitude, and the cycle repeats.

10 20 30 a0 50

No of iterations —>
Fig 4.4: Time series graph for the period 8 behaviour

But, if we start with the same initial value of x and the
parameter value p = 1.644, the picture shows an
irregular pattern which is difficult to predict meaning
thereby the appearance of the chaotic region, Fig 4.5.
Thus, the time series analysis also helps us for full
description of bifurcations and chaos for the concerned
model.
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Fig 4.5: Time series graph for the Chaotic behaviour
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5 .Lyapunov Exponent

In order to verify how much accurate is the
accumulation point, the lyapunov exponent is
calculated. Lyapunov exponent at the parameter greater
than the accumulation point is found to be positive
whereas lyapunov exponent less than the accumulation
point is negative and at the accumulation point it should
be equal to zero. We begin by considering an attractor
point X, and calculate the Lyapunov exponent, which is
the average of the sum of logarithm of the derivative of
the function at the iteration points.

The formula may be summarized as follows:[2,7]
Lyapunov exponent (i) = %(log|f(x0)|+ log|f (x))|+
log|f(xz)|+ log|f(X3)|+ ...... + log|f(xn)|)

From graph of Lyapunov exponent ,we see that some
portion lie in the negative side of the parameter axis
indicating regular behavior (periodic orbits) and the
portion lie on the positive side of the parameter axis
confirm us about the existence of chaos for our model

[2]
R
1.60 /\,"[65

P T SR R
145 1.50 1.5

05

Fig:5.1 Lyapunov exponent of the map.Negative values indicate
periodic.Almost zero values indicate bifurcation points and
positive values indicate chaos.
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