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Abstract: The object of this article is to study the fractional 
kinetic equation which  deals with certain problems in science 
and engineering. The results are obtained in a compact form 
containing Mittag-Leffler function, Robotov’s function and 
Hypergeometric function. 
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1.Introduction 
The fractional kinetic equation  have importance in 
certain field of Physical phenomena governing 
diffusion in porous media, reaction and relaxtion 
processes in complex systems and anomalous diffusion 
etc. For detail , one can see  the monographs by 
Hilfer[10], Kilbas et al.[12], Kiryakova[13] and 
Podlubny[17] . Fractional kinetic equations  are studied 
by Hille and Tamarkin[11], Glöckle and 
Nonnenmacher[7], Saichev and Zaslavsky[20], Saxena 
et al.[21-23]  and Zaslavsky[28].  
The special function of the form 
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(1.1) 
was introduced by Mittag-Leffler[15], in 1903. 
In 1905, this function was generalized by Wiman [27] 
as 
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(1.2) 
Both functions are entire function of order ρ = 1 ൗߙ  and 
type σ = 1. The classical theory of these functions is 
presented in the handbook by Erdilyi et al.[6, section 
18.1], while recent results are given in the 
Dzherbashyan[2,3]. Recently the interest to these 
functions has grown up by their application in some 
evolution problems[8]. 
Prabhakar[18] introduced the function ܧఈ,ఉ

ఊ (z) as  
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(1.3) 
where (ߛ)௞ is Pochhammer symbol [5, section 2.1.1] , 
 = ௞= γ (γ+1) . . . . . . . . . . . .( γ+k-1)      ,    ( k(ߛ)        
1,2,3……) 
 and (ߛ)଴ = 1. 
In 2007, Shukla and Prajapati [25] introduced the 
formula  ܧఈ,ఉ

ఊ,௤(z) which is defined for ߚ,ߙ,ݖ, ∋ ߛ  ; ܥ
Re(α) , Re(β) , Re(γ) > 0 and q ∈ (0,1) ∪  N as : 
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 where (ߛ)௞௤  = Γ(ఊା௞௤)
Γ(ఊ)

  denotes the generalized 
Pochhammer symbol[19].   
The Mellin – Ross function [14] is defined as 
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Operators of fractional calculus have been studied by 
Srivastava and Saxena  [26] . Due to their application in 
solution of integral and differintegral equation , the 
Riemann- Liouville operator of fractional calculus is 
defined by[14,16]. 
௧ିఈ଴ܦ   N(t) = ଵ

 (α)
 ∫ ௧(ݑ)ܰ
଴ ݐ)  −          , ఈିଵ  du(ݑ

Re(α) >0 ,   (1.6) 
with  ܦ௧଴଴  N(t) = N(t) , and 
௧ఈ଴ܦ          ௗ = (ݐ)ܰ 

೙

ௗ௧೙
௧௡ିఈ଴ܦ   N(t) ;   Re(α) , Re(n-α) > 

0.         (1.7) 
By using (1.6) and (1.7) , it yields that for N(t) =  ݐఘ , 
we have  
௧ିఈ଴ܦ ఘ = Γ(ఘାଵ)ݐ 

Γఘାఈାଵ)
        ,t >0 , 1-<(ߩ)ఘାఈ ; Re(α) > 0, Reݐ 

(1.8) 
and  
௧ఈ଴ܦ ఘݐ   = Γ(ఘାଵ)

Γఘିఈାଵ)
ఘିఈݐ   , 0 < Re(α) <1 , Re (ߩ)>-1 , 

t>0.        (1.9) 
The standard kinetic equation , 
ௗ
ௗ௧

 ௜ܰ  (t) = - ܿ௜ ௜ܰ (t) ;                 ܿ ௜  >0.       (1.10) 
By integrating standard kinetic equation , we obtain 
[9,p.58] , 
௜ܰ (t) - ௜ܰ  (0) = - ௜ܿ  ௧ିଵ ௜ܰ (t) ,      (1.11)ܦ 

where ܦ௧ିଵ   is the standard Riemann integral operator. 
Here ௜ܰ  (t) is the number density of species i, which is 
function of time (t) and ௜ܰ (t=0)= ଴ܰ is the number 
density of species i at time t=0, [9]. 
The generalize form of (1.11)  by dropping index i , we 
obtain , 
N(t) - ଴ܰ  = - ௜ܿ  ௧ି௩ N (t) .                (1.12)ܦ 
We can obtain more general integral equation than 
(1.12) by Laplace transform method by invoking the 
result given by Erdelyi et al. [4,p.182], 
ℒ {ܦ௧ି௩}  = ିݏ௩ F(s),         (1.13) 
where  
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ℒ{݂(ݐ)} = F(s) = ∫ ݁ି௦௨∞
଴  f(u) du , Re(s)>0.      (1.14) 

Further, we use a fractional calculus method to obtain 
solution of differintegral equations related to fractional 
kinetic equation (cf. [1] ). 
Our paper is devoted to further investigation of the 
fractional kinetic equation (1.11). The results are 
derived in a compact form by the application of Laplace 
transforms, which are suitable for numerical 
computation. 
 

2. Laplace transform method: 
The integral equation, 
N(t) - ଴ܰ f(t)  = - ܿ௩ ܦ௧ି௩ N (t),           (2.1) 
it follows from (1.12) that , 
    ℒ{ܰ(ݐ)} - ଴ܰ F(s) = - ܿ௩  , {(ݐ)ܰ}௩ ℒିݏ 
which reduces to  
     ℒ{ܰ(ݐ)} =   ଴ܰ ி(ௌ)

(ଵା஼ೡ ௌషೡ)
 , 

provided s>c , we obtain the power series expansion as 
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where 
     (t)௠௩ିଵ* f(t) =  ∫ ݐ) − ௠௩ିଵ௧(ݑ

଴  f(u) du ;      (2.3) 
is convolution integral. 
Main Results : 
A number of  cases follows from (2.2) : 

(I) If  f(t) = ݐఓିଵ ܨଵ ଴ (µ ; _ ; -at ), then we 
can write convolution integral (2.3) as  
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and substituting  x = ݑ ൗݐ  , which yields 

=    
0

( ) ( )
!

k
k

k

a
k





  t௠௩ାµା௞ିଵ  ∫   (1− ௠௩ିଵଵ(ݔ
଴   

 ,ఓା௞ିଵ dxݔ

=   
0

( ) ( )
!

k
k

k

a
k





  t௠௩ାµା௞ିଵ   Γ(௠௩) Γ(ఓା௞)
Γ(௠௩ାఓା௞)

 

The simplification of above equation gives , 
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  t௠௩ା௞ିଵ  ܨଶ ଵ (µ , µ ; mv+ µ ;-at ).     (2.4)   

and by using (2.4) , integral equation (2.2) becomes , 
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where ,   Re(a) , Re(mv+µ) > 0. 
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where   ܧ௧(v,a) is Mellin Ross function defined by (1.5). 
Then convolution integral equation (2.3) written as , 
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substituting x = ݑ ൗݐ  , we obtained  
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on simplification of above equation , 
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Now by using equation (2.7) in (2.2) , it becomes 
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If we assume that p = m , then 
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where  is ( , )v
vR ac t  Robotov’s function [14]. 

We can write (2.8) in term of Mittag – Leffler function 
as , 
N(t) = ଴ܰ ݐ௩ ௩ାଵ,௩ାଵ (-aܿ௩ܧ    . (௩ାଵݐ,
 

3. Special Case: 
By (2.5) , we have 
  N(t) =   ଴ܰ Γ(ߤ) tµିଵ ܧ௩,µ(-ܿ௩ݐ௩) ܨଶ ଵ (µ , µ ; mv+ µ 
;-at ) 
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  N(t) =   ଴ܰ Γ(ߤ) tµିଵ ܧ௩,µ(-ܿ௩ݐ௩) 
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if we set k = 0 in above result , then we have  
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which is well  known result given by Saxena and 
Kalla[24]. 
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