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Abstract: A theoretical solution for an oscillatory flow of an 

electrically conducting, viscous, incompressible visco-elastic fluid 

is obtained without neglecting Hall current. The 

magnetohydrodynamic (MHD) flow is bounded by two infinite 

horizontal plates filled with porous medium. The fluid is injected 

with constant velocity through the lower stationary plate and the 

upper plate is subjected to the same constant suction velocity. The 

effects of Hall current and Hartmann numbers on velocity profile 

and shear stress for different values of the visco-elastic parameter 

with the combination of the other flow parameters are illustrated 

graphically and physical aspects of the problem are discussed.  
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1. Introduction 
The study of flows through porous medium have 

stimulated considerable interest due its applications in 

the fields of agricultural engineering for irrigation 

processes; in petroleum technology to study petroleum 

transport; in chemical engineering for filtration and 

purification processes. Raptis [1] investigated the 

unsteady two-dimensional flow through a porous 

medium bounded by an infinite porous plate subjected to 

a constant suction and variable temperature. Further, 

Raptis and Perdikis [2] studied the problem of free 

convective flow through a porous medium bounded by a 

vertical porous plate with constant suction when the free 

stream velocity oscillates in time about a constant mean 

value. Singh et al. [3] investigated the problem of heat 

transfer in three dimensional flow through a porous 

medium with periodic permeability. Singh and Verma 

[4] studied further the three dimensional oscillatory flow 

through a porous medium where the free stream velocity 

oscillates in time about a non-zero constant mean. Singh 

et al. [5] studied the effect of permeability variation on 

the heat transfer and three dimensional flow through a 

highly porous medium bounded by an infinite porous 

plate with constant suction. Attia [6] studied the Hall 

current effect on the velocity and temperature fields of 

an unsteady Hartmann number. Singh and Mathew [7] 

studied the injection/suction effect on a hydromagnetic 

oscillatory flow in a horizontal porous channel in a 

rotating system. Choudhury and Das [8] extended the 

problem studied by Singh and Mathew [7] to the case of 

visco-elastic fluid. Singh and Kumar [9] investigated the 

problem of on oscillatory MHD flow through a porous 

medium bounded by rotating porous channel in the 

presence of Hall current. The aim of the present 

investigation is to study the effect of the Hall current on 

the visco-elastic fluid flow when the porous horizontal 

channel filled with a porous medium is rotating about an 

axis normal to the planes of the plates. 
 

2.  Mathematical Analysis 
Consider an unsteady oscillatory flow of an electrically 

conducting visco-elastic, incompressible second order 

fluid through a porous medium bounded between two 

insulated infinite parallel porous plates distance d apart. 

The fluid is injected with constant velocity 0w through 

the lower stationary plate and is being sucked with the 

same velocity
0w  through the upper plate which is 

oscillating in its own plane with a velocity )( **
tU  

about a non-zero constant mean velocity 
0U   . A 

coordinate system is taken with the origin at the lower 

stationary plate lying in 
**

yx − plane and 
*

x -axis 

parallel to the direction of motion of the upper plate. The 
*z  -axis taken perpendicular to the planes of the plates, 

is the axis of the rotation about which the entire system 

is rotating with constant angular velocity *Ω . A strong 

magnetic field of uniform strength 0H  is applied along 

*z - axis. The magnetic Reynolds number is considered 

to be small so that the induced magnetic field is 

neglected. Since the plates are infinite in extent, all the 

physical quantities except the pressure depend only on 
*z and 

*
t for this fully developed laminar flow.  

 

The constitutive equation for the incompressible second 

order fluid is of the form  
2

132211 )(AAApI µµµσ +++−=                  (1)    

where  σ  is the stress tensor, nA    (n=1, 2) are the 

kinematic Rivlin-Ericksen tensors; 321 ,, µµµ  are the 

material coefficients describing the viscosity, elasticity 
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and cross-viscosity respectively. The material 

coefficients 321 ,, µµµ  are taken constants with 1µ  and  

3µ   as positive and 2µ as negative (Coleman and 

Markovitz [10]). The equation (1) was derived by 

Coleman and Noll [11] from that of the simple fluids by 

assuming that stress is more sensitive to the recent 

deformation than to the deformation that occurred in the 

distant past. 

Denoting the velocity components 
*** ,, wvu in the 

*** ,, zyx directions, respectively, the continuity 

equation 0
*

*

=
∂

∂

z

w
 gives on integration 0

*
ww =  and 

solenoidal relation for the magnetic field 0. =∇
→
H  

gives 0
*

HH z = (constant) everywhere in the flow field. 

The physical configuration of the problem is shown in 

Figure 1. 

 

 
Figure1: Physical configuration of the problem. 

 

The equation of conservation of electric charge 

0. =∇
→
J  gives 

*
zJ =constant. This constant is zero i.e. 

0* =zJ  at the plates which are electrically non-

conducting. Taking Hall current into account the 

generalized Ohm’s law (Cowling [12]) is of the form 

,
0












×+=×+

→→→→→→
HVEHJ

H
J e

ee µσ
τω                                   (2) 

where 
→
V  is the velocity vector, 

→
H is the magnetic field, 

→
J is the current density, 

→
E is the electric field, σ  is the 

electric conductivity, eµ is the magnetic permeability, 

eω  is the cyclotron frequency and eτ is the electron 

collision time. 

 

For the 
*

x  and 
*y  components of Ohm’s law (2), for 

large magnetic field, which include Hall current, are 

( ),*
0

***
vHEJJ exyeex µστω +=+   

( ).*
0

*** uHEJJ eyxeey µστω −=+  

Since the external electric field arising due to 

polarization of charges is negligible. 

Hence .0** == yx EE  Therefore, solving for 
*
xJ  and 

,*
yJ  we get  

)1(

)(

2

**
0*

m

vmuH
J e

x
+

+
=

σµ      and .
)1(

)(

2

**
0*

m

umvH
J e

y
+

−
=

σµ  

 

Under the above assumptions, the governing equations 

for the flow, in presence of Hall current, are as follows:
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where 2,1, == ii
i

ρ

µ
ν  are the kinematic viscosity, 

*
t  is the time, ρ is the density, 

*
p is the pressure 

and 
*

k is the permeability of the porous medium, 

eem τω=  is the Hall parameter. 

The boundary conditions for the problem are 

0
*** ,0 wwvu ===   at  0* =z , 

0
****

0
** ,0),ωcos1()( wwvtUtUu ==+== ε  at 

dz =*
                                           (5) 

where 
*
ω is the frequency of oscillations, 0U is the 

mean velocity and ε  is a very small positive 

constant. 

Eliminating the pressure gradient, under the usual 

boundary layer approximations, equations (3) and (4) 

reduces to  

)(2 **
02

****
1

*
0

*
zztzzztzzzt uuwvUuuwu ++Ω++=+ νν

       
)(

)1(

)(
**

*

1

2

***2
0 Uu

km

UumvH
−−

+

+−
+

ν

ρ

σ             (6) 

)(2 ****
zz1

*
z0

*
t Uuvvwv −Ω−=+ ν  

Porous Medium 

Ω
0H  

*X
 

*
Y  

0W  

*
Z  
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)( *
zzt

*
zzz02 vvw ++ν

)1(

)(

2

***2
0

m

mUvmuH

+

−+
+

ρ

σ  

*

*

1
k

v
ν−                                                            (7) 

Introducing the following non-dimensional 

quantities  

,,,,ω,
1

2
*

0

*

0

*
**

*

ν
η

d

U

v
v

U

u
utt

d

z
Ω=Ω====  the 

rotation parameter, 

1

2
*
ωω

ν

d
= , the frequency 

parameter, 

1

0ω

ν

d
s =  is the injection/suction 

parameter, 
2

*

d

k
k =  is the permeability parameter, 

µ

σ
dHM 0=  is the Hartmann number, and 

0

*

U

U
U =  into the equations (6) and (7), we get  

 ηηηηηη
ν

u
d

s
vUusuu tt 2

22ωω +Ω++=+                       

tu
d

ηη
ν

2

2+
k

Uu

m

vumvM −
−

+

+−
+

)1(

)(

2

2
                                 (8) 

ηηηηηη
ν

v)(2ω
2

2
t

d

s
Uuvsvv +−Ω−=+

t2

2
ηη

ν
v

d
+

k

v

m

vumvM
−

+

+−
+

)1(

)(

2

2
                                 (9) 

subject to boundary conditions  

1at        0cos 1

0,at              0

==+==

===

ηε

η

  t, vU(t)u

vu                            (10) 

Equations (8) and (9) can now be combined into a 

single equation, by introducing the complex function 

ivuq += ,  as 

k

Uq
Uqsqq tt

−
−+=+ ωω ηηη ηηηα sq(+

),() Uqq t −−+ ληη                                                          (11) 

subject to the boundary conditions  

0=q      at  0=η  

)(
2

1)( itit
eetUq

−++==
ε  at  1=η                               (12) 

where 
2

2

dρ

µ
α = , the visco-elastic parameter and 

.
1

)1(

)1(
2

2

2
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3. Solution of the problem 
       In order to solve equation (11) subject to the 

boundary conditions (12), we look for a solution of 

the form  

{ }itit
eqeqqtq

−++= )()(
2

)(),( 210 ηη
ε

ηη               (13) 

     Substituting (13) into the equations (11) and (12) 

and comparing the harmonic   and non-harmonic 

terms, we get 

 ,0000 λλα −=−′−′′+′′′ qqsqqs                                (14) 

( ) ( )ωλωλαα iqiqsqiqs +−=+−′−′′++′′′ 1111 )1(              (15) 

( ) 2222 )1( qiqsqiqs ωλαα −−′−′′+−+′′′ ( )ωλ i−−=        (16) 

where primes denote differentiation with respect 

toη . 

The corresponding transformed boundary conditions 

are 
 

0210 === qqq      at         0=η , 

1210 === qqq      at        1=η                                  (17) 
 

To solve the equations (14) to (16) under boundary 

conditions (17), we consider very small value of non-

Newtonian parameterα , and substituting  

,)()()( 2

01000 ααηη oqqq ++=

,)()()( 2

11101 ααηη oqqq ++=

)()()( 2

21202 ααηη oqqq ++=                             (18) 

into equations (14) to (16) and boundary conditions 

(18) up to first order of α  and  equating the 

coefficients of like powers of α , we obtain the 

following sets of ordinary differential equations and 

corresponding boundary conditions: 





=−′−′′+′′′

−=−′−′′

001010100

000000

qqsqqs

qqsq

λ

λλ                             (19)  

 with 

  
1at0,1

,0at0

0100

0100

===

===

η

η

qq

qq                                  (20) 

   ( ) ( )
( ) 




=+−′−′′+′′+′′′

+−=+−′−′′

01111111010

101010

qiqsqqiqs

iqiqsq

ωλ

ωλωλ                   (21) 

with 

     
1at0,1

,0at0,0

1110

1110

===

===

η

η

qq

qq                                        (22) 

  ( ) ( )
( ) 




=−−′−′′+′′−′′′

−−=−−′−′′

02121212020

202020

qiqsqqiqs

iqiqsq

ωλ

ωλωλ
                (23) 

with 

     
1at0,1

,0at0,0

2120

2120

===

===

η

η

qq

qq                                     (24) 

          Solving the equations (19), (21), (23) under the 

boundary conditions (20), (22), (24) respectively and 

substituting these values in (18), we get the solutions 

for velocity. The solutions and constants of the 

differential equations are obtained but not presented 

here for the sake of brevity.  
 



Utpal Jyoti Das 

Copyright © 2013, Statperson Publications, Iinternational Journal of Statistika and Mathematika, ISSN: 2277- 2790 E-ISSN: 2249-8605, Volume 5 Issue 1    2013 

4. Results and discussion 
Now for the resultant velocities and the shear stress 

of the steady and unsteady flow, we write 

)())( 000 ηη q(ηviu =+                                  (25) 

and   
itit

eqeqviu
−+=+ )()()()( 2111 ηηηη                        (26) 

 The steady part consists of 0u as the primary and 

0v as the secondary velocity components. The 

amplitude and phase difference due to these primary 

and secondary velocities for the steady flow are given 

by  

    








=+= −

0

01
0

2
0

2
00 tan,

u

v
vuR θ                 (27) 

Figures 2 and 3 depict the resultant velocity 0R  for 

the steady and unsteady part of the flow against η  to 

observe the visco-elastic effects for the various values 

of Hall current )(m  and Hartmann number )(M . It is 

observed from figures 2 and 3 that both 0R  and 

1R increase rapidly  
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Figure 2: Variation of resultant velocity 0R  against η  with 

.2.0,1,3.0 ==Ω= ks  
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Figure 3: Variation of resultant velocity 1R  against η  with  

.5,2.0,1,3.0 ===Ω= ωks  

from zero near the stationary plate for Newtonian 

)0( =α as well as non-Newtonian )1.0,05.0( −−=α  

cases. It is evident from the Figures 2 and 3 that both 

0R  and 1R increase with the increase of Hartmann 

number )(M for both Newtonian and non-Newtonian 

cases. But these results decrease with the increase 

with the increase of Hall current ).(m  

The amplitude and the phase difference of the 

shear stress at the stationary plate )0( =η  for the 

steady flow can be obtained as, 
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     Here yx 00 and ττ are, respectively, the shear 

stresses at the stationary plate due to the primary and the 

secondary velocity components.  
 

Table 1: Values of r0τ  and
r0θ for various values of Mm,  with 

2.0,3.0,8 ===Ω ks . 

Case 
m
 M  α r0τ  r0θ  

I 1 2 

0 2.7482 0.7864 

-0.05 3.4562 0.6842 

-0.10 4.2684 0.5678 

II 2 1 

0 2.5684 0.8997 

-0.05 3.2772 0.8224 

-0.10 4.1282 0.7826 

III 4 1 

0 4.1226 0.6422 

-0.05 6.2254 0.5864 

-0.10 8.7265 0.5216 
 

Table 1 exhibits the effects of the visco-elastic 

parameter α on the amplitude r0τ and the phase 

difference r0θ of the shear stress at the stationary plate 

)0( =η  for the steady part of the flow with the 
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combination of the other flow parameters M   and .m  It 

is observed from the table 1 that the values of 

r0τ increase but r0θ decrease with the increasing values 

of the non-Newtonian  parameter ).1.0,05.0,0( −−=α  

This table shows that r0τ increase with the increase of 

Hartmann number )(M  but decrease with the increase 

of Hall current )(m  for both Newtonian as well as non-

Newtonian cases. 
 

The solutions of 1q  and 2q  together give the unsteady 

part of the flow. The unsteady primary and secondary 

velocity components )(1 ηu and )(1 ηv , respectively, for 

the fluctuating flow can be obtained as           
 

{ } { )(Imcos)( Real)( Real),( 1211 ηηηη qtqqtu −+=

} tq sin)(Im 2 η−                                                                      (30) 

{ } tqqtv sin)( Real)( Real),( 211 ηηη −=

{ } tqq cos)(Im)(Im 21 ηη ++                                                (31) 
 

       The resultant velocity or amplitude and the phase 

difference of the unsteady flow are given by 
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                                      (32) 

     For the unsteady part of the flow, the amplitude and 

phase difference of shear stresses at the stationary plate 

( 0=η ) can be obtained as  
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which gives  
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Table 2: Values of r1τ  and r1θ for various values of Mm,  with 

2.0,3.0,8 ===Ω ks . 

Case m  M  α r1τ  r1θ  

I 1 2 

0 1.6412 0.5262 

-0.05 3.8926 0.4721 

-0.10 6.2542 0.3946 

II 2 1 

0 1.5864 0.5987 

-0.05 3.1225 0.5678 

-0.10 5.8462 0.4996 

III 4 1 

0 2.5778 0.4884 

-0.05 7.8892 0.4263 

-0.10 10.7884 0.3692 

The amplitude r1τ  and phase difference r1θ  of the 

unsteady shear stresses at the stationary plate 

)0( =η have been listed in Table 2. It is observed from 

the Table 2 that the values of r1τ  decrease with the 

increase of Hall current ).(m  But  r1τ  increase with the 

increase of Hartmann number )(M for both Newtonian as 

well as non-Newtonian cases. The phase difference 

r1θ increase with the increase of m , but decrease with 

the increase of M  for both Newtonian and non-

Newtonian cases. 
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