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Abstract: Mutual information is a concept in information theory
which may help us to define independence. We present estimators
of mutual information of continuous random variables with heavy
tails based on histogram and describe their asymptotic properties.
Under appropriate assumptions on the tail behavior of the random
variables, we obtain root N consistency of the estimators. We
analyses the usefulness of this measure in testing statistical
dependence.
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1. Introduction

Measuring dependence between the random
variables is a fundamental and interesting problem in
statistics. It finds applications in all the fields of statistics
and is very useful in time series analysis. There is lot of
attention in obtaining a measure that describes the
dependence between the random variables. The classical
and most popular measure of linear dependence is the
correlation coefficient. It is commonly used in many areas
due to its simplicity, low computational cost and ease of
estimation. But, it is well known that correlation is not
equivalent to dependence. Correlation cannot be defined
for models with stable or heavy tail distributions due to
the lack of second order moments (Adler et al. (1998),
Brockwell and Davis (1987)). Granger (1983) illustrated
that some bilinear and deterministic chaotic series have
all correlation zero. Mutual information between two
random variables which describes the reduction in
uncertainty of one random variable knowing the other
random variable. Mutual information is same as the
Kullback-Leibler divergence between the joint probability
density and product of marginal probability densities.
Mutual information has the property that it is always non
negative and is zero if and only if the random variables
are independent. We can extend this to define conditional

2. Entropy and Mutual Information

mutual information between two random variables given
another. This property provides possibility of using
mutual information and as dependence measures. Another
measure of dependence is the informational coefficient of
correlation introduced by Linfoot (1957), which is
defined for continuous random variables.This measure is
an increasing monotone function of mutual information
and it preserves the attractive properties of mutual
information. Also it lies between zero and one.This
property is a useful standardization when comparing
different dependence measures. After Linfoot’s initial
work on this measure, more of its properties were studied
and applied by Granger and Lin (1994) and Dionisio et al.
(2004). In the present study we consider estimation of
mutual information of continuous random variables with
heavy tails based on histogram. Since mutual information
is functions of entropy, the estimation demands the
estimation of functionals of probability density functions
(Moddemeijer (1989)). Kernel density estimates are
widely wused nonparametric technique to estimate
probability density function (Wand and Jones (1995)).
We use histogram kernel to estimate probability density
functions as its asymptotic properties are well studied
(Ahmad and Lin (1976), Joe (1989)). We obtain
asymptotic properties under some assumptions on the tail
of the distribution. The rest of the paper is organized as
follows, In Section 2; we introduce entropy and mutual
information measures and study its properties. Estimation
of mutual information is discussed in Section 3.
Histogram based estimation and its asymptotic properties
are studied in Section 4. Testing independence and a
bootstrap algorithm for testing are discussed in the last
section.

In this section we start with a brief overview of information theoretic measures required for subsequent development
of the theory. After introducing entropy and mutual information we discuss the properties that help us to measure

dependence.
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Definition 1:
Let X and Y be absolutely continuous random variable with joint density function fy ,(x,y) and marginals f, (x)

and f, (y) respectively. The information contained in X given by the Shannon entropy is defined as
H(X)=~[ fy(x)log fy (x)dx.
The joint entropy of (X,Y) is given by
H(X,Y)=—[ fy, (x,y)log fy , (x,y)dxdy.
The conditional entropy of X given Y is defined as

HX 1Y) =~[[ fi, (x.)log f(x1 y),

where f(x|y) is the conditional distribution of x given y.
If X and Y are independent, then H(X,Y)=H(X)+H(Y) and H(XIY)=H(X).

Definition 2:
The mutual information I(X,Y) is defined as

f(x,y)
I(X,Y .
X, V)=[[ f(x, 0o TR @)

Simple algebra shows that
I(X,Y)=H(X)-H(XY)
=H(X)+H(Y)-H(X.Y)

ey

@

Remark 1:
I(X,Y) is a symmetric measure of dependence between X and Y. It is also the Kulback-Leibler distance between joint

density f, ,(x,y) and the product of marginal densities f, (x) and f,(y). Hence I(X,Y) is always non negative
and zero if and only if X and Y are independent.

Remark 2:

I(X,Y)=+o0o. This follows from data processing theorem ( Cover and Thomas (1991)). Note that if X a discrete
random variable, then I(X,X)= H(X), the entropy of X.

Next we study some properties of these measures.

Theorem 1
I(X,Y)$ is invariant to separate one to one transformation.
Proof:

Let X" =h(X)andY =h,(Y).
Let g,, be the joint density of X LY, g,and g, be the densities of X “and Y*respectively.

Consider
1X".Y")=(lo (glz—’y)) dx’d
.Y )=|log 2 )z ()gn(xy)xy
_ Fro (X 'y Y dh1 dhy'
_-[ (fx(hll *)fy(hl ><) fXY(hl dx dy d d
Or

I(X",¥") = 1o (;X(Y()fy) ) fyy (%, y)dxdy

=I1(X,Y).
This completes the proof.
Now we will discuss the estimation of mutual information.
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3. Estimation of Mutual information
The estimation of mutual information is equivalent to estimation of the functional of density. The natural estimate are

f(xy)
1 X,Y)= s (6)
= Z RTETI0)

which is consistent for I(X,Y) when J f(x, y)(logdedy <oo.

F)f(y)
Unfortunately it is not practical to use the above estimate when the underlying density f itself is unknown. In this
scenario the estimation procedure involves the following steps: First estimate the joint density/conditional density. After
obtaining the density estimate, evaluate the integral to obtain the estimate I (X,Y).

For a given kernel function K(.) we can estimate the p-variate density nonparametrically as

A 1

(x)=— @)
£, (_l)hp]%lf{(x X;)/hy

or

N 1 n

f(x>=W;K{<x—X_,)/h}, ®)

and we can estimate

fx,
ix, Y)—— ©
2187 %00 7 )f(y,)

The set S is a subset of (1,2,...,n) and is introduced in case is necessary to trim the summands.
Now we establish the consistency of the estimator of I(X,Y).

Let (X,,Y)),(X,,Y,),...(X,,Y )be a sample from bivariate distribution f(x, y) with marginals’ f(x) and f(y).
Suppose E llog f(X,Y)I< oo and each Ellog f(X)I<ooand Ellog f(Y)I< co.
Suppose f(x, y), f(x) and f(y) are density estimators of f(x,y), f(x)and
f () such that

| f(x[’ y[)
FGa)
L f(x) TR 0 (A)

f(x)

f(y,)_“j)o,
)

P
max -11-0,

max

and max,_; |

Theorem

N P
If the above assumptions (A) holds then, I1(X,Y)—I1(X,Y).

Proof
Consider
RiCHAN
I(X Y)= log
”; f(X)f(y,
o FCLIFENf ) T fGy)

_n,es T O f(ay)  n & G f ()

1 f(x,9,) fx) 1 foy 1 f(x,5,)
=—Soe Ll =N o0l 2N oe L2l 4 N oo L0 )
L2 n;(’gﬂx,) T A I v
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Now since |log(1+ x)I< 21 x by assumptions (A) the first three terms converges to 0 in probability and by ergodic
theorem

1 Fx.y) T FX.Y)

“Slog L) pog L1201

Y I ey
= I(X.Y).

Now in the next section we will show how the estimator of mutual information helps to test independence.

4. Test for Independence
From Remark 2, two random variables X and Y are independent if and only if /(X ,Y) = 0. In practise as we are using

sample estimate of mutual information, we want to test the significance of (X ,Y). In the present study we adopt a

bootstrap approach to test the significance of I (X,Y).Under the null hypothesis we assume that the random variables

are independent. We estimate the achieved significance level (ASL) through bootstrap samples of the original time
series. The test procedure is thus composed of the following steps:

1. Calculate f(X, Y) for the observed sample (x,, yt) t=12,...,n.

2. Randomly permute the sample {(x,,y,)}and obtain a bootstrap sample (X,,y,) of same size n.
3. Calculate I(X,Y) for the bootstrap sample (x,y,).

4. Repeat steps 2-3 B times.

5. Calculate the one-sided bootstrap ASL as

1+i1(i(X,Y)zi(X,Y))

A j=1
plk)y=—
1+B
6. Reject the null hypothesis of independence if p(k) < @, where & denotes the chosen significance level.
5. Conclusion 7. Granger, C. W. J., (1983). Forecasting

whitenoise. In Zellner, A. (ed.), Applied Time

In the present study we discussed the estimation of Series Analysis of Economic Data, pp. 308

mutual information and sFudied its asymptotic properti'es. 314. Washington, DC: Bureau of the Census.
We showed that the estimator can be used for testing 8 Granger, C. and J.-L. Lin.,(1994). Using the
statistical dependence between pair of random variables Mutual Information Coefficient to Identify
and bootstrap procedure for testing is also given. Lags in Nonlinear Models, J. Time Ser. Anal.,
15(4), 371-384.
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