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Abstract: Mutual information is a concept in information theory 
which may help us to define independence. We present estimators 
of mutual information of continuous random variables with heavy 
tails based on histogram and describe their asymptotic properties. 
Under appropriate assumptions on the tail behavior of the random 
variables, we obtain root N consistency of the estimators. We 
analyses the usefulness of this measure in testing statistical 
dependence. 
Keywords: Mutual information, Entropy, Kernel density, 
Independence. 
 

1. Introduction 
Measuring dependence between the random 

variables is a fundamental and interesting problem in 
statistics. It finds applications in all the fields of statistics 
and is very useful in time series analysis. There is lot of 
attention in obtaining a measure that describes the 
dependence between the random variables. The classical 
and most popular measure of linear dependence is the 
correlation coefficient. It is commonly used in many areas 
due to its simplicity, low computational cost and ease of 
estimation. But, it is well known that correlation is not 
equivalent to dependence. Correlation cannot be defined 
for models with stable or heavy tail distributions due to 
the lack of second order moments (Adler et al. (1998), 
Brockwell and Davis (1987)). Granger (1983) illustrated 
that some bilinear and deterministic chaotic series have 
all correlation zero. Mutual information between two 
random variables which describes the reduction in 
uncertainty of one random variable knowing the other 
random variable. Mutual information is same as the 
Kullback-Leibler divergence between the joint probability 
density and product of marginal probability densities. 
Mutual information has the property that it is always non 
negative and is zero if and only if the random variables 
are independent. We can extend this to define conditional 

mutual information between two random variables given 
another. This property provides possibility of using 
mutual information and as dependence measures. Another 
measure of dependence is the informational coefficient of 

correlation introduced by Linfoot (1957), which is 
defined for continuous random variables.This measure is 
an increasing monotone function of mutual information 
and it preserves the attractive properties of mutual 
information. Also it lies between zero and one.This 
property is a useful standardization when comparing 
different dependence measures. After Linfoot’s initial 
work on this measure, more of its properties were studied 
and applied by Granger and Lin (1994) and Dionisio et al. 
(2004). In the present study we consider estimation of 
mutual information of continuous random variables with 
heavy tails based on histogram. Since mutual information 
is functions of entropy, the estimation demands the 
estimation of functionals of probability density functions 
(Moddemeijer (1989)). Kernel density estimates are 
widely used nonparametric technique to estimate 
probability density function (Wand and Jones (1995)). 
We use histogram kernel to estimate probability density 
functions as its asymptotic properties are well studied 
(Ahmad and Lin (1976), Joe (1989)). We obtain 
asymptotic properties under some assumptions on the tail 
of the distribution. The rest of the paper is organized as 
follows, In Section 2; we introduce entropy and mutual 
information measures and study its properties. Estimation 
of mutual information is discussed in Section 3. 
Histogram based estimation and its asymptotic properties 
are studied in Section 4. Testing independence and a 
bootstrap algorithm for testing are discussed in the last 
section.

 
 

2. Entropy and Mutual Information 
In this section we start with a brief overview of information theoretic measures required for subsequent development 

of the theory. After introducing entropy and mutual information we discuss the properties that help us to measure 
dependence.  
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Definition 1: 

 Let X and Y be absolutely continuous random variable with joint density function , ( , )X Yf x y  and marginals ( )
X

f x   

and (y)
Y

f  respectively. The information contained in X given by the Shannon entropy is defined as  

    ( ) ( ) log ( ) .
X X

H X f x f x dx= −∫   (1) 
 

The joint entropy of (X,Y) is given by  

, ,( , ) ( , ) log ( , ) .
X Y X Y

H X Y f x y f x y dxdy= −∫   (2)
 

The conditional entropy of X given Y is defined as 

                       ,( | ) ( , ) log ( | ),
X Y

H X Y f x y f x y= −∫ ∫  (3) 

where ( | )f x y  is the conditional distribution of x given y. 
 

If X and Y are independent, then H(X,Y)=H(X)+H(Y) and H(X|Y)=H(X). 
 

Definition 2:  
The mutual information I(X,Y) is defined as 

( , )
( , ) ( , ) log

( ) ( )

f x y
I X Y f x y dxdy

f x f y
= ∫ ∫ .  (4) 

Simple algebra shows that  

( ) ( ) ( )

( ) ( ) ( )

|,

,

I X Y H X H X Y

H X H Y H X Y

= −

= + −
 

 

Remark 1:  
I(X,Y) is a symmetric measure of dependence between X and Y. It is also the Kulback-Leibler distance between joint 

density , ( , )X Yf x y   and the product of marginal densities  ( )
X

f x   and (y).
Y

f  Hence  I(X,Y) is always non negative 

and zero if and only if X and Y are independent. 
 

 Remark 2:  

( , )I X Y = +∞ . This follows from data processing theorem ( Cover and Thomas (1991)). Note that if  X a discrete 

random variable, then I(X,X)= H(X), the entropy of X. 
 

Next we study some properties of these measures. 
 

Theorem 1 

I(X,Y)$ is invariant to separate one to one transformation. 
Proof: 

Let 
* *

1 2( ) ( ).X h X and Y h Y= =  

Let 12g be the joint density of 
* *

1,,X Y g and 2g be the  densities of 
*X and  

*Y respectively.  
 

Consider 
* *

* * * * * *12
12* *

1 2

1 * 1 * 1 1
, 1 2 1 * 1 * * *1 2

, 1 21 * 1 * * *

1 2

( , )
( , ) log ( , )

( ) ( )

( , )
log ( , ) .

( ) ( )

( )

( )X Y

X Y

X Y

g x y
I X Y g x y dx dy

g x g y

f h x h y dh dh
f h x h y dx dy

f h x f h y dx dy

− − − −

− −

− −

=

=

∫

∫

 

Or 

,* *

,

( , )
( , ) log ( , )

( ) (

( , ).

( )X Y

X Y

X Y

f x y
I X Y f x y dxdy

f x f y

I X Y

=

=

∫  

This completes the proof. 
Now we will discuss the estimation of mutual information. 
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3. Estimation of Mutual information 
The estimation of mutual information is equivalent to estimation of the functional of density. The natural estimate are  

1

1 ( , )
( , ) log ,

( ) ( )

n

t

f x y
I X Y

n f x f y=

= ∑   (6) 

which is  consistent for I(X,Y)  when 
( , )

( , )(log
( ) ( )

f x y
f x y dxdy

f x f y
< ∞∫ . 

Unfortunately it is not practical to use the above estimate when the underlying density f itself is unknown. In this 
scenario the estimation procedure involves the following steps: First estimate the joint density/conditional density. After 

obtaining the density estimate, evaluate the integral to obtain  the estimate ˆ( , ).I X Y  

For a given kernel function K(.) we can estimate the p-variate density nonparametrically as  

1,

1ˆ ( ) {( ) / }
( 1)

n

i jp
j j i

f x K x X h
n h = ≠

= −
−

∑   (7) 

or 

1

1ˆ( ) {( ) / },
n

jp
j

f x K x X h
nh =

= −∑    (8) 

and we can estimate  
ˆ ( , )1ˆ( , ) .

ˆ ˆ( ) ( )

t t

t S t t

f x y
I X Y log

n f x f y∈

= ∑    (9) 

The set S is a subset of (1,2,...,n) and is introduced in case is necessary to trim the summands. 

Now we establish the consistency of the estimator of ( , ).I X Y  

Let 1 1 2 2( , ), ( , ),...( , )
n n

X Y X Y X Y be a sample from bivariate distribution ( , )f x y with marginals’ f(x) and f(y). 

Suppose | log ( , ) |E f X Y < ∞ and each | log ( ) |E f X < ∞ and | log ( ) | .E f Y < ∞  

Suppose ˆ ˆ( , ) , ( )f x y f x and ˆ ( )f y are density estimators of ( , ) , ( )f x y f x and  

 ( )f y such that  

ˆ ( , )
max | 1| 0 ,

( , )

ˆ ( )
max | 1| 0 ,  

( )

ˆ ( )
and max | 1| 0 ,

( )

P
t t

t S

t t

P
t

t S

t

P
t

t S

t

f x y

f x y

f x

f x

f y

f y

∈

∈

∈

− →

− →

− →

   (A) 

 

Theorem 

If the above assumptions (A) holds then, ˆ( , ) ( , ).
P

I X Y I X Y→  

Proof 

Consider 

ˆ ( , )1ˆ( , ) log
ˆ ˆ( ) ( )

ˆ ( , ) ( ) ( ) ( , )1 1
log log

ˆ ˆ ( ) ( )( ) ( ) ( , )

ˆ ˆ ˆ( , ) ( ) ( ) ( ,1 1 1 1
log log log log

( , ) ( ) ( )

t t

t S t t

t t t t t t

t S t S t tt t t t

t t t t t

t S t S t S t St t t t

f x y
I X Y

n f x f y

f x y f x f y f x y

n n f x f yf x f y f x y

f x y f x f y f x y

n f x y n f x n f y n

∈

∈ ∈

∈ ∈ ∈ ∈

=

= +

= − − +

∑

∑ ∑

∑ ∑ ∑ ∑
)

( ) ( )
t

t t
f x f y
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Now since | log(1 ) | 2 | |x x+ ≤ by assumptions (A) the first three terms converges to 0 in probability and by ergodic 

theorem  

( , )1 ( , )
log (log )

( ) ( ) ( ) ( )

( , ).

P
t t

t S t t

f x y f X Y
E

n f x f y f X f Y

I X Y

∈

→

=

∑  

Now in the next section we will show how the estimator of mutual information helps to test independence. 
 

4. Test for Independence 

From Remark 2, two random variables X and Y are independent if and only if ( , ) 0.I X Y =  In practise as we are using 

sample estimate of mutual information, we want to test the significance of ˆ( , ).I X Y  In the present study we adopt a 

bootstrap approach to test the significance of ˆ( , ).I X Y Under the null hypothesis we assume that the random variables 

are independent. We estimate the achieved significance level (ASL) through bootstrap samples of the original time 
series. The test procedure is thus composed of the following steps: 
 

1.  Calculate  ˆ( , )I X Y for the observed sample ( ),  1, 2,..., .t tx y t n=  

2. Randomly permute the  sample {( , )}
t t

x y and obtain a bootstrap sample ( , )
t t

x y% % of same size n. 

3. Calculate  ( , )I X Y% for the bootstrap sample ( , )
t t

x y% % . 

4. Repeat steps 2-3 B times.  
5. Calculate the one-sided bootstrap ASL as 

1

ˆ1 ( ( , ) ( , ))

ˆ ( ) .
1

B

j

I I X Y I X Y

p k
B

=

+ ≥

=
+

∑ %

 

6. Reject the null hypothesis of independence if ˆ ( ) ,p k α≤ where α   denotes the chosen significance level. 
 
 
 

5. Conclusion 
In the present study we discussed the estimation of 
mutual information and studied its asymptotic properties. 
We showed that the estimator can be used for testing 
statistical dependence between pair of random variables 
and bootstrap procedure for testing is also given. 
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