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Abstract: The hydromagnetic free convective flow of a visco-

elastic electrically conducting fluid past an infinite vertical 

porous plate in presence of constant suction and heat source has 

been analyzed. Approximate solution of the problem is obtained 

by using multi-parameter perturbation technique. The velocity 

field, temperature field, skin friction and rate of heat transfer are 

studied and the effects of visco-elastic parameter are illustrated 

with the combination of other flow parameters involved in the 

problem. The relevancy of this problem has been noticed in the 

fields of geophysics and astrophysics.  
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1. Introduction 
The mechanism of free convection has been 

attracted the interest of various researchers as it is 

highly used in many engineering applications such as 

designing, ventilating and heating of buildings, cooling 

electronic components, drying several types of 

agricultural products like grain,  food and packed bed 

thermal storage.  The consequences of free convection 

magnetic field under the application of transverse 

magnetic field have been used in the field of 

geophysics, astrophysics, engineering problems and in 

industrial purpose. Hasimoto [9] has studied the 

boundary layer growth on a flat plate with suction or 

injection. The effect of heat transfer on fluid flow with 

heat transfer along a plane wall has been explained by 

Gersten and Gross [8]. Soundalgekar [21] has discussed 

the free convection effects on steady MHD flow past a 

vertical porous plate. The flow behaviour of hydro-

magnetic free convection past an accelerated vertical 

plate has been investigated by Raptis and Singh [15]. 

An analysis of unsteady hydro-magnetic free 

convection flow with constant heat flux has been done 

by Singh and Sacheti [19] by using finite difference 

scheme. Jha [10] has investigated the effects of applied 

magnetic field on transient free convective flow in a 

vertical channel. The nature of unsteady free convective 

MHD flow with heat transfer past a semi-infinite 

vertical porous moving plate with variable suction has 

been analysed by Kim [11]. Sharma and Pareek [18] 

have studied the free convective flow past a vertical 

porous moving surface in presence of transverse 

magnetic field. The combined effects of heat and mass 

transfer in MHD flow of a viscous fluid past a vertical 

plate under oscillatory suction velocity have been 

explained by Singh et al. [20]. Makinde et al. [12] have 

investigated the unsteady free convection flow with 

suction on an accelerating porous plate. The impact of 

constant suction and heat sink on unsteady free 

convective MHD flow past an infinite vertical plate has 

been analysed by Sahoo et al. [16].  Sarangi and Jose 

[17] have examined the flow behaviour of unsteady free 

convection and mass transfer past a vertical porous 

plate and variable temperature in presence of transverse 

magnetic field. The effect of variable suction on 

unsteady magneto-hydrodynamic flow past an infinite 

vertical moving plate in presence of heat transfer has 

been explained by Ogulu and Prakash [14]. Das et al. 

[5] have studied  the mass transfer effects on unsteady 

flow past an accelerated vertical porous plate with 

suction numerically. The flow pattern of unsteady free 

convection past an accelerated vertical plate with 

suction and heat flux in presence of transverse magnetic 

field has been analysed numerically by Das et al. [6].  

A theoretical explanation on unsteady free convective 

MHD flow past a vertical porous plate through a porous 

medium with suction and heat source has been given by 

Das et al. [7]. Nowadays, researchers have shown their 

interest in the area of non-Newtonain fluid flow field as 

these are used in geo-physics, chemical engineering 

(absorption, filtration), petroleum engineering, 

hydrology, soil-physics, bio-physics, paper and pulp 

technology. Mansutti  et al. [13] have examined the 

steady flows of non-Newtonian fluids past a porous 

plate with suction or injection. Choudhury and Dey 

[2,3], Choudhury and Mahanta [4] Choudhury and 

Debnath[1] etc. have analysed a number of problems 

for flows past a flat plate under different physical 

situations. In this study, an analysis is carried out to 

study the hydro-magnetic free convective flow of a 

visco-elastic fluid past an infinite vertical porous plate 

through a porous medium in presence of constant 

suction and heat source. The velocity field and the 

shearing stress at the plate are obtained and illustrated 
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graphically to observe the visco-elastic effects in 

combination with other flow parameters. 

The constitutive equation for Walters liquid (Model B
/
) 

is 

��� =  −pg	
 + σ	
′  , σ′	
 = 2η
e	
 − 2k
e′	
      (1.1)  

where σ	
 is the stress tensor, p is isotropic pressure, g	
 

is the metric tensor of a fixed co-ordinate system x	,  v	 is the velocity vector, the contravarient form of e′	
 is given by 

e′	
 = ����
�� + v�e  ,�	
 − v  ,� 
 e	� − v  ,�	 e�
          (1.2)                                                                         

It is the convected derivative of the deformation rate 

tensor e	
 defined by  

 2e	
 = v	,
 + v
,	                                (1.3)                                                                                                                 

Here η
 is the limiting viscosity at the small rate of 

shear which is given by 

η
 = � N(τ)dτ  and  ∞


 k
 = � τN(τ)dτ∞


               (1.4)                                                                      

N( ) being the relaxation spectrum . This idealized 

model is a valid approximation of Walters liquid 

(Model B′) taking very short memories into account so 

that terms involving 

 ,                          (1.5)                                   

have been neglected. 

Walters [22] reported that the mixture of 

polymethyl metha crylate and pyridine at 25
0
 C 

containing 30.5 gm of polymer per litre and having 

density 0.98 gm/ml fits very nearly to this model. 

Polymers are used in the manufacture of space crafts, 

aeroplanes, tyres, belt conveyers, ropes, cushions, seats, 

foams, plastic, engineering equipments, contact lens 

etc. Walters liquid (Model B
/
) forms the basis for the 

manufacture of many such important and useful 

products. 
 

2. Formulation of the problem 
Consider the unsteady free convective flow of a viscous incompressible electrically conducting fluid past an infinite 

vertical porous plate in presence of constant suction and heat flux and transverse magnetic field. Let the x´-axis be 

taken in vertically upward direction along the plate and y´-axis normal to it. Neglecting the induced magnetic field 

and the Joulean heat dissipation and applying Boussinesq’s approximation the governing equations of the flow field 

are given by:    

Continuity equation $%´

$&´
= 0 ⇒ %´ = −%
´                            (2.1) 

 

Momentum equation $)´

$*´
+ %´

$)´

$&´
= +,(-′ − -∞′ ) + . $/)´

$&´/ − �0
/)´

1 − .
2´

)´

− 3
1 4 $5)
$*´$&´/ + %´

$5)´

$&´5 − 2 $%´

$&´

$/)´

$&´/ − 3 $)´

$&´

$/%´

$&´/6                                                            (2.2) 

Energy equation 

  $-´

$*´
+ %´

$*´

$&´
= 3 $/-´

$&´/ + 7´(-′ − -∞′ )                (2.3) 

The boundary conditions of the problem are: &´ = 0 ∶  )´ = 0, %´ = −%
´ , -´ = -9´ + :(-9´ − -∞´ ) &´ → ∞: )´ → 0, -´ → -∞´                                        (2.4)                                                
 

We now introduce the following  non-dimensional quantities : 

         & = &′%
′.  ,    * = * ′%=′ /
4.  ,   > = 4.>′

%
′ /  ,   ) = )′

%
′  ,   . = η
1  , ? = @�0
/1 A .
%
´ /    , 2B = %
´ /2´

./  , - = - ′ − -∞′-9′ − -∞′   , CD = .
3  ,

ED = .+ β(-9′ − -∞′ )
%
′ 5  , 7 = 47′.

%
′ /                                                          (2.5) 

where  g is the acceleration due to gravity, ρ is the density, σ is the electrical conductivity, ν is the 

coefficient of kinematic viscosity, β is the volumetric coefficient of expansion for heat transfer , ω is the angular 

frequency, η
 is the coefficient of viscosity, k is the thermal diffusivity, Τ is the temperature , -9 is the temperature 

at the plate, -∞  is the temperature at infinity, Pr is the Prandtl number, Gr is the Grashof number for heat transfer, S 

is the heat source parameter, Kp is the permeability parameter and M is the magnetic parameter. 

The non-dimensional form of (2.2) and (2.3) are as follows: 

             14
$)
$* − $)

$& = ED- + $/)
$&/ − )

2G − ?) − 2 41
4

$5)
$*$& − $5)

$&56              (2.6) 

1
4

$-
$* − $-

$& = 1
CD

$/-
$&/ + 1

4 7-                (2.7) 
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The corresponding boundary conditions are: & = 0:      ) = 0, - = 1 + εJ�KL                              &→∞ ∶       )→0,             -→0                              (2.8) 

3. Method of solution 
To solve equations (2.6) and (2.7), we assume ε to be very small and the velocity and temperature in the 

neighbourhood of the plate as  )(&, *) = )
(&) + εJ�KL)N(&),                            (3.1)  -(&, *) = -
(&) + εJ�KL-N(&)                             (3.2) 

Substituting equations (3.1) and (3.2) in equations (2.6) and (2.7) respectively, equating the harmonic and non 

harmonic terms and neglecting the coefficients of ε/ , we get  

Zeroth order equations:  
 2)
′′′ + )
′′ + )
′ − O? + 1

2BP )
 = −ED-
       (3.3) 

 -
′′ + CD-
′ + 1
4 CD7-
 = 0                                     (3.4)  

subject to boundary conditions are :    & = 0:      )
 = 0, -
 = 1            & → ∞:      )
 = 0, -
 = 0                             (3.5) 

First order equations : 

  2)N′′′ + Q1 − R�K
S T )N′′ + )N′ − Q N

RG + ? + �K
S T )N = −ED-N                                                                                 (3.6) 

   -N′′ + CD-N′ − CD
4 (U> − 7)-N = 0                        (3.7) 

with relevant boundary conditions are,          & = 0:      )N = 0,        -N = 1                & → ∞:      )N = 0, -N = 0                             (3.8) 

Using multi-parameter perturbation technique and taking K<< 1, we assume   )
 = )

 + 2)
N                                                  (3.9)   )N = )N
 + 2)NN                                                  (3.10) 

Now using equations (3.9), (3.10) in equations (3.3) and (3.6) and equating the coefficients of like powers of K and 

neglecting the higher power of K, we get the following set of differential equations: 

Zeroth order : 

 )

′′ + )

′ − Q? + N
RGT )

 = −ED-
                      (3.11)  

 )N
′′ + )N
′ − O? + 1
2B + U>

4 P )N
 = −ED-N           (3.12) 

The modified boundary conditions are:  & = 0 ∶    )

 = 0, -
 = 1, )N
 = 0,   -N = 1   &→∞ ∶      )

 = 0, -
 = 0, )N
 = 0,     -N = 0                          (3.13) 
 

First order: 

 )
N′′ + )
N′ − O? + 1
2BP )
N = −)

′′′                 (3.14) 

 )NN′′ + )NN′ − O? + 1
2B + U>

4 P )NN = −)N
′′′ + U>
4 )N
′′                   (3.15) 

The corresponding boundary conditions are,  & = 0 ∶      )
N = 0, -
 = 0, )NN = 0,    -N = 0   &→∞ ∶      )
N = 0, -
 = 0, )NN = 0,     -N = 0                           (3.16) 

Solving equations (2.12) and (2.15) subject to the boundary conditions (2.13) and (2.16), we get  -
 = JWXYZ                                                               (3.17)  -N = JWX[Z                                                               (3.18) 

Also solving equations (3.11), (3.12) subject to the boundary conditions (3.13) and solving (3.14), (3.15) subject to 

the boundary conditions (3.16), we get   )

 = \N(JWX]Z − JWXYZ)                                   (3.19)  )N
 = \S(JWX^Z − JWX[Z)                                             (3.20)  )
N = \5(JWX]Z − JWXYZ)                                             (3.21)   )NN = \_(JWX^Z − JWX[Z)                                            (3.22) 

with the use of above solutions, the velocity and temperature fields are expressed by 



Rita 

       )  = \N(JWX]Z − JWXYZ) + 2\5(JWX]Z − J- = JWXYZ + εJ�KLJWX[Z                      (3.24) 
 

3.1. Skin Friction 
The skin friction at the wall is given by ` = \a(b/ − b_) + εJ�KL\c(bS − bc)

− 2 d1
4 \cU>εJ�KL(bS − bc

3.2. Heat Flux 
The heat flux at the wall in terms of Nusselt number is given by

= −b/ − bS
where the constants α1 to α8 and A1 to A8 are obtained but not given due to brevity.
 

4. Discussions and results 
The purpose of this study is to bring out the effects of visco

combination of other flow parameters. The visco

The corresponding results for Newtonian 

the results obtained by Das et al. [7]. Figures 1

parameters involved in the solution. The figures enable that an accelerated flow is noticed in the neighbourhood of 

the plate but as the distance increases, the speed diminishes after attaining the maximum speed. This phenomenon is 

noticed in both Newtonian and Visco-elastic fluid flows. Also, it can be concluded that the growth of visco

factor (K= 0.05, 0.1) enhances the speed of complex fluid system in
 

Figure 1: Variation of transient velocity u against y for Pr=5, S=0.2, Kp=4, M=1, 
 

The effects of Grashof number on velocity profile are 

characterizes the free convection parameter for heat transfer a

viscous force. In our study, we have considered the positive values of Grasho

past an externally cooled plate. The figure states that rising value of Gr

Newtonian and non-Newtonian fluids, which in turn boost up the speeds of both the fluids. 
 

Figure 2: Variation of transient velocity u against y for Gr=7, S=0.2, Kp=4, M=1, 

   

In fluid flow problems, the significance of Prandtl number cannot

behaviour of both momentum and thermal diffusions. Figure 2 represent

profile. Prandtl number is defined as the ratio of momentum diffusion to thermal diffusion. The rising value of 
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JWXYZ) + :J�KLe\S(JWX^Z − JWX[Z) + 2\_(JWX^Z − JWX[
 

c) − \a(b_/ − b//) − \cεJ�KL(bc/ − bS/)f                        �3.25

terms of Nusselt number is given by 

 gh � O$-$&PZi=
      

SεJ�KL                                                            �3.26� 
are obtained but not given due to brevity. 

The purpose of this study is to bring out the effects of visco-elastic parameter on the governing flow with the 

combination of other flow parameters. The visco-elastic effect is exhibited through the non-dimensional parameter K

 fluid are obtained by setting K=0 and these results show conformity with 

]. Figures 1-5 depict the velocity profile u against y for various value

The figures enable that an accelerated flow is noticed in the neighbourhood of 

the plate but as the distance increases, the speed diminishes after attaining the maximum speed. This phenomenon is 

elastic fluid flows. Also, it can be concluded that the growth of visco

factor (K= 0.05, 0.1) enhances the speed of complex fluid system in-comparison with the simple Newtonian fluid.

 
Variation of transient velocity u against y for Pr=5, S=0.2, Kp=4, M=1, ω=5.0, ωt=π/2, 

number on velocity profile are obtained from figure 1. Grashof

characterizes the free convection parameter for heat transfer and is defined as the ratio of buoyancy force to the 

we have considered the positive values of Grashof number. Gr > 0, interprets that flow 

past an externally cooled plate. The figure states that rising value of Grashof number declines the viscosity of both 

Newtonian fluids, which in turn boost up the speeds of both the fluids.  

 
Variation of transient velocity u against y for Gr=7, S=0.2, Kp=4, M=1, ω=5.0, ωt=π/2,

the significance of Prandtl number cannot be ignored, as it studies the 

behaviour of both momentum and thermal diffusions. Figure 2 represents the effect of Prandtl number on velocity 

profile. Prandtl number is defined as the ratio of momentum diffusion to thermal diffusion. The rising value of 
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elastic fluid flows. Also, it can be concluded that the growth of visco-elasticity 

comparison with the simple Newtonian fluid. 
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Prandtl number raises the thickness of the fluid and hence the fluid experiences a decelerating trend. This physical 

phenomenon is observed in Newtonian as well as visco-elastic fluid. 
 

 
Figure 3: Variation of transient velocity u against y for Gr=7, Pr=5,  Kp=4, M=1,  ω=5.0, ωt=π/2, ε=0.01 

 

 
Figure 4: Variation of transient velocity u against y for Gr=7, Pr=5,  S=0.2,  M=1, ω=5.0, ωt=π/2, ε=0.01 

 

The influence of heat source parameter on visco-elastic fluid and Newtonian fluid are presented in figure 3. 

The introduction of heat source raises the speed of Newtonian as well non-Newtonian fluid flows. The effect of 

permeability on the fluid flow is shown in figure 4 and the figure characterizes that the increase of permeability 

parameter declines the speed of the both complex and simple fluid mechanisms along with the increasing values of 

visco-elastic parameter. 
 

 
Figure 5: Variation of transient velocity u against y for Gr=7, Pr=5,  S=0.2,  Kp=4, ω=5.0, ωt=π/2,ε=0.01 

 

Figure 5 illustrates the behaviour of fluid flow for various values of Hartmann number. Hartmann number 

depicts strength of transverse magnetic field. The application of transverse magnetic field produces Lorentz force and 

the Lorentz force has a retarding effect on the velocity. As a consequence, the thickness of the fluid will be enlarged 

and the speed will go down. This diminishing trend in speed is observed in visco-elastic fluid characterized by 

Walters liquid (Model B
/
). The study of shearing stress experienced by the governing fluid flow gives the importance 

of the concerned problem. So knowing the velocity field, the shearing stress at the plate is obtained for various values 

of visco-elastic parameter. Figures 6-10 depict the nature of viscous drag formed during the motion of Newtonian 

and non-Newtonian fluids. The figures enable that the shearing stress experiences a declined trend along with the 

modification of visco-elastic parameter. 
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Figure 6: Variation of skin friction τ at the wall against Pr for Gr=7, S=0.2, Kp=4, M=1, 
 

Figure 6 shows the behaviour of skin friction against Prandtl number for Newtonian as well as non

Newtonian fluid flows. It is noticed that in the neighbourhood of small values of  Prandtl number, the shearing stress 

subdues but for Pr ≥ 2, it shows a rising trend. This phe

simple Newtonian fluid. 
 

Figure 7:  Variation of skin friction τ at the wall against Gr for  Pr=5, S=0.2, Kp=4, M=1, 
 

The effect of natural convection parameter on the shearing

positive values of Grashof number is very important mainly because of its use in various cooling problems of 

engineering and industrial purposes. Here, it is detected from the figure that as the degree of cooln

increases, the shearing stress or viscous drag will decelerate in various fluid flow

downward trend is observed for the flow governed by visco
 

Figure 8: Variation of skin friction τ at the wall against M for Gr=7, Pr=5, Kp=4, S=0.2, 
 

The effect of Lorentz force on the shearing stress is shown in figure 8 and Har

the nature of Lorentz force. As Hartmann number

Newtonian fluid flow. The influence of Hartmann number on the visco

governed by simple Newtonian law of viscosity.
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Variation of skin friction τ at the wall against Pr for Gr=7, S=0.2, Kp=4, M=1, ω=5.0, ωt=

behaviour of skin friction against Prandtl number for Newtonian as well as non

Newtonian fluid flows. It is noticed that in the neighbourhood of small values of  Prandtl number, the shearing stress 

 2, it shows a rising trend. This phenomenon is observed in visco-elastic fluid as well as in 

 
Variation of skin friction τ at the wall against Gr for  Pr=5, S=0.2, Kp=4, M=1, ω=5.0, ωt=

The effect of natural convection parameter on the shearing stress is analyzed in figure 7. The stu

f number is very important mainly because of its use in various cooling problems of 

engineering and industrial purposes. Here, it is detected from the figure that as the degree of cooln

increases, the shearing stress or viscous drag will decelerate in various fluid flow. mechanisms. But a considerable 

downward trend is observed for the flow governed by visco-elastic fluid in comparison to the Newtonian fluid flow.

 
Variation of skin friction τ at the wall against M for Gr=7, Pr=5, Kp=4, S=0.2, ω=5.0, ωt=

The effect of Lorentz force on the shearing stress is shown in figure 8 and Hartmann number characterizes 

nature of Lorentz force. As Hartmann number enhances the shearing stress diminish in both Newtonian and non

. The influence of Hartmann number on the visco-elastic fluid flow is superior than the fluid 

governed by simple Newtonian law of viscosity. 
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Figure 9: Variation of skin friction τ at the wall against permeability parameter Kp with Gr=7, Pr=5, S=0.2, M=1, 

 

Figure 10: Variation of skin friction τ at the wall against S for Gr=7, Pr=5, Kp=4, M=1, 
 

Figure 9 and 10 represent the consequences of permeability parameter and heat source on the skin friction 

formed at the plate respectively. The growth

with the increasing values of visco-elastic parameter. But a reverse behaviour is experienced during the modification 

of strength of the heat source. 

 The temperature profile and rate 

visco-elasticity of the fluid flow.  
 

Conclusions 
From the present study we can make the following 

conclusions: 

1. The velocity profile first increases and 

then decreases in both Newtonian and 

non- Newtonian cases. 

2. The fluid is accelerated with the 

increasing values of visco elastic 

parameter in comparison with the 

Newtonian fluid. 

3. The skin friction τ first de

then increases with the increasing 

values of Prandtl number Pr

4.  A declined trend is observed in case 

of increasing values of  Grashof

number Gr , Hartmann number M and 

heat source parameter S. 

5. The skin friction τ slightly enhances 

with the increasing values of 

permeability parameter  Kp.
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 at the wall against permeability parameter Kp with Gr=7, Pr=5, S=0.2, M=1, 

ε=0.01 

 
Variation of skin friction τ at the wall against S for Gr=7, Pr=5, Kp=4, M=1, ω=5.0, ωt=π

10 represent the consequences of permeability parameter and heat source on the skin friction 

formed at the plate respectively. The growths of permeability parameter boost up the magnitude of skin friction along 

elastic parameter. But a reverse behaviour is experienced during the modification 

 of heat transfer are not affected significantly during the changes made in 

From the present study we can make the following 

The velocity profile first increases and 

ecreases in both Newtonian and 

The fluid is accelerated with the 

increasing values of visco elastic 

parameter in comparison with the 

first decreases and 

with the increasing 

Prandtl number Pr. 

A declined trend is observed in case 

f increasing values of  Grashof 

number Gr , Hartmann number M and 

 

 slightly enhances 

with the increasing values of 

lity parameter  Kp. 
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