International Journal of Statistika and Mathematika, ISSN: 2277- 2790 E-ISSN: 2249-8605, Volume 5, Issue 2, 2013 pp 39-44

A Stochastic Analysis of Two Competitive
Interacting Species with Bionomic Harvesting of
Both the Species

R. Srilathal*, B. Ravindra ReddyZ*, N. Ch. Pattabhiramacharyulu3
'Sree Chaitanya Inst. of Tech. & Sci., Thimmapur, Karimnagar-505527, Andhra Pradesh, INDIA.
2Department of Mathematics, INTUH CE, Nachupally, Karimnagar-505501, Andhra Pradesh, INDIA.
3Professor (Retd.) of Mathematics, NIT, Warangal — 506004, Andhra Pradesh, INDIA.

Corresponding Addresses:

“bsrilatha82 @ gmail.com, Trbollareddy@ gmail.com

Research Article

Abstract: This paper deals with two species competitive model
with both the first and second species are harvested under bionomic
conditions. The model is characterized by a pair of first order non-
linear ordinary differential equations. All the possible equilibrium
points of the model are identified and the criteria for the local and
global stabilities are discussed .The possibility of existence of bio
economic equilibrium is being discussed. We also provide
analytical estimates of the population intensities of fluctuations by
Fourier transform methods.

1. Introduction

There is an extensive study on several kinds of prey-
predator interactions after it was initiated by Lotka [1]
and Volterra [2]. Bionomics of natural resources has
played a significant role in all these interactions. There is
a strong impact of harvesting on the dynamic evolution of
a population. In fishery, forestry, agriculture and wild life
management, the exploitation of biological resources and
harvesting of population species can be seen. The
problems of predator-prey systems in the presence of
harvesting were discussed by many authors and attention
on economic policies from harvesting have also been
analysed. A detailed discussion on the issues and
techniques associated with the bionomic exploitation of
natural resources was given by Clark [3, 4]. A study on a
class of predator-prey models under constant rate of
harvesting of both species simultaneously was made by
Brauer and Soudack [5, 6]. Multi-species harvesting
models are also studied in detail by Chaudhuri [7, 8]. In
the study of population dynamics, many Mathematical
models have been proposed. In order to reflect the
dynamical behavior of the models depending on the
existing data and information of the system, it is often
necessary to incorporate stochastic term with additive
noise. For long time, it has been recognized that
stochastic terms have very complicated impact on the
dynamics of a system, which can not cause the instability
but also induce some noise, in terms of oscillations and

periodic solutions. Models on the combined harvesting of
a two species prey predator fishery have been discussed
by Ragozin and Brown [9], Chaudhuri and Saha Ray [11],
etc. A resource based competitive system in three species
with persistence and global stability of the system was
studied by chattopadhyaya and et.al. [10]. Prey-predator
model with harvesting was also studied by Dai and Tang
[12]. In 1973, Holling [15] emphasized the influence of
noise in ecological dynamics and resilience. The noise
may arise from stochastic disturbance of the external
environment. Under the disturbance of noise, the species
dynamics are always stochastic or seemingly stochastic.
In 1996 J. Ripa et. al [16] examined the noise colour and
the risk of population extinction in a prey predator system
widely. In 2003 Xu, C, et.al [14] investigated about White
noise or noise with a white variance spectrum contains no
temporal autocorrelation and is essentially a series of
independent random numbers about the population
dynamics and color environmental noise of a three
species food chain system. Later in 2009, Sun, G.Q et.al
[17] emphasized the role of noise in a predator—prey
model with Allee effect. In 2011, Wenting Wang et.al
[18] found the effect of colored noise on spatiotemporal
dynamics of biological invasion in a diffusive predator-
prey system. K. Shiva Reddy et.al [13] proposed the
mathematical model for the three species ecosystem
comprising of two predators competing for the prey. They
also investigated the stability concepts using various
mathematical techniques.

In this connection here we constructed a
mathematical model based on the system of non-linear
equations. The global stability of the system at interior
steady state is determined and illustrated numerically.
The conditions of the existence of a bionomic equilibrium
are discussed by taking simple economic considerations
into an account. We also provide analytical estimates of
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the population intensities of fluctuations by Fourier
transform methods.

2. Mathematical Model

The model equations for a two species competitive
system are given by the following system of non-linear
ordinary differential equations

:a]Nl_allle_aIZNlNz_q]ElNl\ @.1)

dN.
7; =a,N, _azzsz -, N\N, —¢,E,\N, (2.2)

where N, and N, are the populations of the first and
second species with natural growth rates (bio potentials)
a,and a, respectively, @, is rate of decrease of the first
species due to insufficient food, &), is rate of decrease of
the first species due to inhibition by the second species,
Q,, is rate of decrease of the second species due to
inhibition by the first species, ,, is rate of decrease of
the second species due to insufficient food other than the
first species; ¢, is the catch ability co-efficient of the first
species, E, is the harvesting effort, g, is the catch ability
co-efficient of the second species, E, is the harvesting
effort, and ¢q,EN, , q,E,N,
functions based on the catch-per-unit-effort hypothesis.

are the catch-rate

Further both the variables N, and N, are non-negative
and the model parameters
ay,a,,0,,,0,,0,,,0y,4,,E,q,, E,,

a,—q,E ,a, —q,E, are assumed to be non-negative

constants.

3. Analysis of Equilibrium Points
The steady state equations of (2.1)-(2.2) are

N G.1)
dt
N, _ (3.2)
dt

The four possible equilibrium points are

(i) D, (0,0) (In the absence of both the first and second
species),

(i) D, (ﬁl, 0) (In the absence of second species),

(iii) D;(0,N,) (In the absence of first species),

(iv) D, (Nl,N_z) (The interior steady state)

Case (i): The population is extinct and this steady state
always exists.
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Case (ii): If ﬁl is the positive solution of equation (3.1),

thenﬁl =[a,-qE ]/ &,

which is always positive because of the initial assumption

a,—qkE >0.

Case (iii): If ins the positive solution of the equation

(3.2), then Fz = [a2 -q,E, ] / 0y, which is always

positive because of the initial assumptiona, — g, E, > 0.

Case (iv): If ﬁl,ﬁz are the positive solutions of (3.1)

& (3.2), then

N {%(al —4kE)

0@~ F)

{%(@ ~4E)

0@, ~g.E)

This state would exists only when
ay,(a,—q,E)> o, (a, —q,E,) ,

}/[%% —0,05

2

}/ a0 a4

a,(a,—q,E,) >0, (a,—q,E) o,a,>a,a,

4. Discussion about Local Stability
In this section the characteristic equation is

A2+ Aa, N, +a, N,) Ha, 0y, — ,0,)N,N, =0 4.1
Since the sum of the roots of (4.1) is

A+, = _(allﬁl T, F2) “4.2)
which is negative and the product of the roots
A, = (a0, —0,,0,)N, N, (4.3)

is positive, the roots of (4.1) can be noted to be negative.
Hence the system is locally asymptotically stable.

5. Discussion about Global Stability
Theorem: The Equilibrium point Q(Nl,ﬁz) is globally

asymptotically stable.
Proof: let us consider the following Liapunov function

V(N,,N,)= (Nl _ﬁl_ﬁlln(Nl /ﬁl))
+1, (N2 ~N,-N,In(N, /E))

l. . .
where lis suitable positive constant.
Differentiating V w.r.to‘t” we get

dv _(Nl—Nldel N (Nz—Nz]sz
| M= [ NN

dr N, Ja N, )dr

1

N,~N
:[ITIJ Nl{al —a;N, _a12N2_q1E1}
1

+, N,—-N, Nz{az_azzNz_alel}
N, 4.k,
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= (Nl _Nl){al —a,N,—a,N, _q1E1}+

ll(NZ _NZ){% —ayN,+ay,N, —q,E,}

=(M_Nl) a,Ni+a,N>+qE —a,N,— +
“lzNz_qlEl

L(N, _ﬁz){a@Nﬁ%lM +q.E, _a'zzNz}
—, N, —4.E,

=(M =N ){-a, (N, = N1)=a, (N, - N2}
L (N, N2 ){a (N, = N2) =ay (N, - N )}

=-a, (N, —ﬁl)z —a,(N,-N1)(N,-N:)

1 {(—azz)(zv2 -N) }
(N~ (N, - Na)

=, (N, ~N\) = (N, =N ) (N, 2

+

—lay, (N2 -N; )2 —-la, (Nl —Nl)(]\’2 —Nz)
<-a, (N] —Xﬁ)z _l1a22(N2 —sz)z

2

_%{(M—M)Q(Nrm)

_ll%{(M—M)z (Nz—Nz)E]

—\2 —\2
<=, (N, =Ni) ~lan(N, - N2)
_ % ';llazl)(Nl _Nl)z

_(%%)(Nz _NZ)Z
<0

Hence D, (Fl, Fz) is asymptotically stable. Therefore, the

equilibrium point D, (ﬁl,ﬁz) is globally asymptotically

stable.

6. Bionomic Equilibrium

The bionomic equilibrium is nothing but the combination

of the concepts of biological equilibrium as well as

economic equilibrium. A biological equilibrium is given

by dn, =0, aN, = (. The economic equilibrium is said to
dt

be achieved when the total revenue obtained by selling

the harvested biomass equals the total cost for the effort

devoted to harvesting. Letc,, c,be fishing cost per unit
effort of the first and second species respectively. Let
P,» P, be price per unit biomass of the first and second
species respectively. Therefore net revenue or economic
rent at any time givenbyM =M, + M, .

Where M|, = (p,q,N, —c,)E, is the net economic
revenue for the first species and
M, =(p,q,N, —c,)E,is the net economic revenue for
the second species at any time 7 The bionomic
equilibrium ((N1 )es (N (E))_ L (E, )w) is given by the

following equations

aN,-a,N’ —a,N,N, —qEN, =0 6.1)
a,N, _azzsz -a, NN, -q,E,N, =0 (6.2)
M:(plqlNl _Q)E+(P2q2]\]2 _Cz)Ez =0 (6.3)

In order to determine the bionomic equilibrium we come
across the following cases.
Case (i): If for the second species, fishing cost is greater

than the revenue (¢, > p,q, N, ), then fishing of second
species is not feasible. Hence fishing of first species
population remains operational (¢, < p,q,NV,). Thus,

when E, =0 and ¢, < p,g,N, we have

(Nl )oo =6 / P4, (Ny)., :I:(al _qlEl)_all(Nl)w]/alz
6.4)

Case (ii): If the cost is greater than the revenue in the
first species fishing, then the first species fishing will be

closed (i.e. E, = 0).Only second species fishing remains

operational.

(N,), =¢,1p,gq,> (N))., :_[(az _quz)_azz(Nz)w]/azl
(6.5)

Case (iii): If ¢, > p,q,N, ,c, > p,q,N, , then the cost

is greater than revenues for both the species and the

whole fishery will be closed.

Case (iv): If ¢ <pgqN, ,c, <p,q,N,, then the

revenues for both the species being positive, then the

whole fishery will be in operation.

In this case (N,)_=¢, / pq, (6.6)
(Nz )r,° =,/ pyq, (6.7)
Substitute (6.6) and (6.7) in (6.1), (6.2) we get
(E,) =[a1_(0"'c')/plql}/ql ©6.8)
T H@,6) ! pyg,
a, —(a,,c,)/
(Ez)m:|: 2 = (0,0,) pzqz}/qz 6.9)
—(a,,¢,) 1 pg,
(E). >0if
a, >[(,c) /! pql+la,c, ! p,q,] (6.10)
(E,)_>0if

a, +laye [ pig 1>y, 1 pyg, ] 6.11)
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The Non-trivial Bionomic equilibrium point
((N)..(N))..(E)...(E,)_) exists, if (6.10) and
(6.11) must hold.

7. A Stochastic Model

The main assumption that leads us to extend the
deterministic model (2.1)-(2.2) to a stochastic
counterpart is that it is reasonable to conceive the
open sea as a noisy environment. There are many
number of ways in which environmental noise
may be incorporated in system (2.1)-(2.2). Note
that environmental noise should be distinguished
from demographic or internal noise, for which the
variation over time is due. External noise may
arise either form random fluctuations of one or
more model parameters around some known mean
values or from stochastic fluctuations of the
population densities around some constant values.
In this section, we compute the population
intensities of fluctuations (variances) around the
positive equilibrium D, due to noise, according to

the method introduced by Nisbet and Gunney
(1982). Now we assume the presence of randomly
fluctuating driving forces on the deterministic
growth of the first and second species populations
at time ‘t’, so that the system (2.1)-(2.2)results in
the stochastic delay system with ‘additive noise’

L=aN, -0 N’ —0,NN, —g EN, +0i5(1) (7.1)

285

2 =aN,~op N, -0 NN~ EN,+05(0) - (1.2)
where N, (t) represents first species, N, ()
represents second species. «,,, are real
constants and &(z) =[& (1),&, ()] isa2D
Gaussian White noise process satisfying
E[&(1)]=0:i=12

E[fi (1)¢ (t')]zéjjd(t—t');izj:l,z

where 5” is the Kronecker symbol; ¢ is the O -

dirac function.
Let N(t)=u,(t)+ S ; N,(t)=u,(t)+P"; (1.3)
dN, _du,(t) dN, du,(1) .
e dr At dr
Using (7.3), equation (7.1) becomes
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w (1) =au, (1) +aS —au’ ) -0, (")
=2a,,u,(t)S” — o, u, (Hu, (1)

—a,u, (P — a,u, (S —a,S P

~q Eu, ()=, E S+, (1) (7.4)
The linear part of (7.4) is

u (1) = —a,u, (S” —a,u, (NS +a,E (1) (5
Again using (7.3) equation (7.2) becomes

u, (1) = a,u, (t) + a, P" — ey, (t) — &,y (P’
=2, u, ()P — oty u, (Hu, ()

+-q,E,u, (t)_‘bEzP* +a,6, (1) (71.6)
The linear part of (7.6) is
u, (1) = =Cpu, ()P — au, (P +a,E, (1) (1.7)

Taking the Fourier transform on both sides of
(7.5), (7.7) we get,

aé (o) =(io+a,S" )i () + a,S"ii, () (7.8)
@, &, (@) = o, Plii, () + (i0+,, P ) i, (@) (1.9)
The matrix form of (7.8),(7.9) is
M (0)i(0)=¢(o) (7.10)
where
M (o) ={A(co) B(w)] ()= P(w)} ;

C(w) D(w) i, ()
z & (@) :
fir-| 10
Aw)=io+a,S"; B@=a,S"; C(w)=a,P";
D(w)=io+a,P (7.11)

Eqn.(7.10) can also be written as
i(0)=[M ()] £(w)
Let [M (a))]_l = K(w) , therefore,

i(0) = K(0)é(w) (7.12)
Do _ Ba

where M@ M) (7.13)
M@ [M@)

if the function Y (¢) has a zero mean value , then
the fluctuation intensity (variance) of it’s
components in the frequency interval [®, @+ d @]

is S, (w)dw
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where S, (@) is spectral density of ¥ and is
defined as

~ 2

V(o)

(7.14)

5@ fim

If Y has a zero mean value, the inverse transform
of §, (w)1is the auto covariance function

17 ior
CY(T)zgisy(w)e do (7.15)

The corresponding variance of fluctuations in
Y(¢) is given by

| =
- 7.16
L S, (w)dw (7.16)

and the auto correlation function is the normalized
auto covariance
Cy (1)

B (7)= (7.17)
v () C, )
For a Gaussian white noise process, it is
E[S (9)¢ ()]
Sé’é/ (w)_T—Hw f
T 7
1 P 4 E (4 (1)
= lim — E|¢ (t)s |t e~ dgr dt
T"—>+ooTJ; »[T I: () J( ):|
2 2
=9, (7.18)
From (7.12), we have
2 ~
w):ZKf:f(w)fj(w)ﬂ:l,Z (7.19)
j=1
From (7.14) we have
2 2
SM(W)ZZI:%\K;-(@ ;i=12 (7.20)
=

Hence by (7.16) and (7.20), the intensities of
fluctuations in the variable u, ; i =1,2 are given

by
K, (@) do. i=12 (7.21)

da)} (7.22)

and by (7.. 13), we obtain

{Iq Joe
o= el

M)

A(@ (o

where |M (@) =|R(w)|+i|l(w) (7.23)
Real part of

M(0)] =R (0) =[~& + (05,00, - 00,0,)S P] (7.24)
Imaglnary part

of|[M (w)| = I’ () = (we, P* + wer, S™ )’ (7.25)

Finally from (7.11) we get
)" =@ +(a,S")*;
B(@)|" = (@, )| C(@) = (e, P

ID(@)|" =& +(a, P’ (7.26)
By substitution of (7.23), (7.11) in (7.22), we get,
I 3 \2
2 1 J‘ ! . a{d +(0P) dw (7.27)
7| LR @+ +q(@,8 Y
1 iRz(w)Hz(w) (7.28)
.=
afd +<fqls ) }} -
+05(05,P')

If we are interested in the dynamics of system
(7.1)-(7.2) with either &, =0 or a, =0 then the

population variances are

If o, =0, then
_a@,S) T 1 (7.29)
A 2 Rz(a)+12(a)
2 %(%1}))
- d (7.30)
" o J,ORZ(w)Hz(a» @
Ifa, =0, then
A S 2 (1.31)
Mle(@HZ(w)[af +(@,P) Jda)
L. SR S Py S (132)
% 27sz2(w)+12(w)[ e )} @

8. Numerical Simulation

In this paper, we substantiate as well as augment
our analytical findings through numerical
simulations considering the following parameters.
Example (1):

a, =6;a, =02, =0.05,q, =0.5; E, =10;

a, =4;a,, =0.3;a,, =0.1;q, =0.5; E, =20
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20

species1
species2

population

Figure (8.1)
Figure (8.1) shows that the variation of population against time,

initially with N = 20; N = 10;
Example(2):

a,=6;a,=0.2;a,=0.05¢9, =05;E, =10;
a, =4;a,, =0.3;a, =0.1;q, =0.5; E, =20

20

species1
species2

population

time
Figure (8.2)
Figure (8.2) shows that the variation of population against time
initially with N, =10; N, = 20;

9. Discussion and Concluding Remarks

In this paper, a model of a competitive system with
stochastic term was formulated. Initially we have
discussed about the model without stochastic term and
investigated the existence of equilibrium points, local
stability by employing Routh-Hurwitz criteria, global
stability by constructing Lyapunov function. We
incorporated the stochastic term in the model, also we
present spatial competition model that contains some
important factors, and such as the population intensities
of fluctuations (variances) around the positive
equilibrium due to noise are computed and also analyzed
the stability with graphical representation using Matlab.
Some Numerical simulations for justifying the theoretical
analysis are also provided. Here we studied about the
competitive model by incorporating environmental
fluctuations through additive White noise. The analytical
results and numerical simulation of deterministic model

International Journal of Statistiika and Mathematika, ISSN: 2277- 2790 E-ISSN: 2249-8605, Volume 5 Issue 2

suggest that the deterministic competitive model is stable.
The stable nature of the system shows this situation in
figures (8.1)-(8.2). Further for stochastic model system
population vacancies characterize the stochastic stability
of the system. Therefore by contolling the environmental
fluctuations, the existence of the system can be checked.
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