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Abstract: This paper deals with two species competitive model 

with both the first and second species are harvested under bionomic 

conditions. The model is characterized by a pair of first order non-

linear ordinary differential equations. All the possible equilibrium 

points of the model are identified and the criteria for the local and 

global stabilities are discussed .The possibility of existence of bio 

economic equilibrium is being discussed. We also provide 

analytical estimates of the population intensities of fluctuations by 

Fourier transform methods.  
 

1. Introduction 
There is an extensive study on several kinds of prey- 

predator interactions after it was initiated by Lotka [1] 

and Volterra [2]. Bionomics of natural resources has 

played a significant role in all these interactions. There is 

a strong impact of harvesting on the dynamic evolution of 

a population. In fishery, forestry, agriculture and wild life 

management, the exploitation of biological resources and 

harvesting of population species can be seen. The 

problems of predator-prey systems in the presence of 

harvesting were discussed by many authors and attention 

on economic policies from harvesting have also been 

analysed.  A detailed discussion on the issues and 

techniques associated with the bionomic exploitation of 

natural resources was given by Clark [3, 4]. A study on a 

class of predator-prey models under constant rate of 

harvesting of both species simultaneously was made by 

Brauer and Soudack [5, 6]. Multi-species harvesting 

models are also studied in detail by Chaudhuri [7, 8].  In 

the study of population dynamics, many Mathematical 

models have been proposed.  In order to reflect the 

dynamical behavior of the models depending on the 

existing data and information of the system, it is often 

necessary to incorporate stochastic term with additive 

noise. For long time, it has been recognized that 

stochastic terms have very complicated impact on the 

dynamics of a system, which can not cause the instability 

but also induce some noise, in terms of oscillations and 

periodic solutions.  Models on the combined harvesting of 

a two species prey predator fishery have been discussed 

by Ragozin and Brown [9], Chaudhuri and Saha Ray [11], 

etc. A resource based competitive system in three species 

with persistence and global stability of the system was 

studied by chattopadhyaya and et.al. [10]. Prey-predator 

model with harvesting was also studied by Dai and Tang 

[12].  In 1973, Holling [15] emphasized the influence of 

noise in ecological dynamics and resilience. The noise 

may arise from stochastic disturbance of the external 

environment. Under the disturbance of noise, the species 

dynamics are always stochastic or seemingly stochastic.  

In 1996 J. Ripa et. al [16] examined the noise colour and 

the risk of population extinction in a prey predator system 

widely. In 2003 Xu, C, et.al [14] investigated about White 

noise or noise with a white variance spectrum contains no 

temporal autocorrelation and is essentially a series of 

independent random numbers about the population 

dynamics and color environmental noise of a three 

species food chain system. Later in 2009, Sun, G.Q et.al 

[17] emphasized the role of noise in a predator–prey 

model with Allee effect. In 2011, Wenting Wang et.al 

[18] found the effect of colored noise on spatiotemporal 

dynamics of biological invasion in a diffusive predator-

prey system.  K. Shiva Reddy et.al [13] proposed the 

mathematical model for the three species ecosystem 

comprising of two predators competing for the prey. They 

also investigated the stability concepts using various 

mathematical techniques. 

In this connection here we constructed a 

mathematical model based on the system of non-linear 

equations. The global stability of the system at interior 

steady state is determined and illustrated numerically. 

The conditions of the existence of a bionomic equilibrium 

are discussed by taking simple economic considerations 

into an account. We also provide analytical estimates of 
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the population intensities of fluctuations by Fourier 

transform methods. 
 

2.  Mathematical Model 
The model equations for a two species competitive 

system are given by the following system of non-linear 

ordinary differential equations 

21
1 1 11 1 12 1 2 1 1 1\

dN
a N N N N q E N

dt
α α= − − −   (2.1) 

22
2 2 22 2 21 1 2 2 2 2

dN
a N N N N q E N

dt
α α= − − −   (2.2)   

where 1N  and 2N  are the populations of the first and 

second species with natural growth rates (bio potentials) 

1a and 2a  respectively, 11α  is rate of decrease of the first 

species due to insufficient food, 12α  is rate of decrease of 

the first species due to inhibition by the second species, 

21α  is rate of decrease of the second species due to 

inhibition by the first species, 22α  is rate of decrease of 

the second species due to insufficient food other than the 

first species; 1q  is the catch ability co-efficient of the first 

species, 1E  is the harvesting effort, 2q  is the catch ability 

co-efficient of the second species, 2E  is the harvesting 

effort, and 1 1 1q E N  , 2 2 2q E N  are the catch-rate 

functions based on the catch-per-unit-effort hypothesis. 

Further both the variables 1N  and 2N  are non-negative 

and the model parameters  

1 2 11 12 21 22 1 1 2 2, , , , , , , , , ,a a q E q Eα α α α

1 1 1 2 2 2,a q E a q E− −  are assumed to be non-negative 

constants. 
 

 

3.   Analysis of Equilibrium Points 
The steady state equations of (2.1)-(2.2) are 

1 0
dN

dt
=      (3.1) 

            2 0
dN

dt
=       (3.2) 

The four possible equilibrium points are 

 (i)   
1 (0,0)D (In the absence of both the first and second 

species), 

(ii)  
2 1( ,0)D N  (In the absence of second species), 

(iii) 
3 2(0, )D N  (In the absence of first species), 

(iv)  4 1 2( , )D N N   (The interior steady state) 
 

Case (i):  The population is extinct and this steady state 

always exists. 

Case (ii):  If 1N  is the positive solution of equation (3.1), 

then [ ]1 1 1 1 11/N a q E α= −           

which is always positive because of the initial assumption 

1 1 1 0a q E− > . 

Case (iii): If 2N is the positive solution of the equation 

(3.2), then [ ]2 2 2 2 22/N a q E α= − which is always 

positive because of the initial assumption 2 2 2 0a q E− > . 

Case (iv): If 1 2,N N  are the positive solutions of (3.1) 

& (3.2), then  

[ ]22 1 1 1

1 11 22 12 21

12 2 2 2

( )
/

( )

a qE
N

a q E

α
α α α α

α

− 
= − − − 

  

[ ]21 1 1 1

2 11 22 12 21

11 2 2 2

( )
/

( )

a qE
N

a q E

α
α α α α

α

− − 
= − + − 

  

This state would exists only when 

22 1 1 1 12 2 2 2( ) ( )a q E a q Eα α− > −
, 

11 2 2 2 21 1 1 1( ) ( )a q E a q Eα α− > −
, 11 22 12 21

α α α α>   
 

4.   Discussion about Local Stability 
In this section the characteristic equation is  

2

11 1 22 2( )N Nλ λ α α+ + 11 22 12 21 1 2( ) 0N Nα α α α+ − =  (4.1) 

Since the sum of the roots of (4.1) is 

 
1 2 11 1 22 2( )N Nλ λ α α+ = − +    (4.2)  

which is negative and the product of the roots 

1 2 11 22 12 21 1 2( )N Nλ λ α α α α= −   (4.3) 

is positive, the roots of (4.1) can be noted to be negative. 

Hence the system is locally asymptotically stable. 
 

5.   Discussion about Global Stability 

Theorem: The Equilibrium point 
4 1 2
( , )D N N  is globally 

asymptotically stable. 

Proof: let us consider the following Liapunov function 

( )( )1 2 1 1 1 1 1( , ) ln /V N N N N N N N= − −

( )( )1 2 2 2 2 2ln /l N N N N N+ − −
 

where 1l is suitable positive constant. 

Differentiating V w.r.to‘t’ we get 

1 21 1 2 2
1

1 2

dV N N dN N N dN
l

dt N dt N dt

   − −
= +   
     

{ }11
1 1 11 1 12 2 1 1

1

N N
N a a N a N q E

N

 −
= − − − 
 

2 2 22 2 21 12
1 2

2 22

a a N a NN N
l N

q EN

  − −−  
+    −  
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( ){ }11 1 11 1 12 2 1 1
N N a a N a N q E= − − − −

+   

   
( )21 2 2 22 2 21 1 2 2{ }l N N a a N a N q E− − + −

 

( ) 1 211 12 1 1 11 1
11

12 2 1 1

a N a N q E a N
N N

a N q E

 + + − −
= − + 

−    

    
( ) 2 122 21 2 2 22 2

21 2

21 1 2 2

a N a N q E a N
l N N

a N q E

 + + −
−  

− −  
 

( ) ( ) ( ){ }1 1 21 11 1 12 2N N a N N a N N= − − − − −
   +

( ) ( ) ( ){ }2 2 11 2 22 2 21 1l N N a N N a N N− − − − −
 

( ) ( )( )
2

1 1 211 1 12 1 2a N N a N N N N= − − − − −
+   

    

( )
( )( )

2

222 2

1

1 221 1 2

( )a N N
l

a N N N N

 − − 
 

− − −    

( ) ( )( )
( ) ( )( )

2

1 1 211 1 12 1 2

2

2 1 21 22 2 1 21 1 2

a N N a N N N N

l a N N l a N N N N

= − − − − −

− − − − −
 

( ) ( )
( ) ( )

( ) ( )

2 2

1 211 1 1 22 2

2 2

1 21 2

12

2 2

1 21 2

1 21

2 2

2 2

a N N l a N N

N N N N
a

N N N N
l a

< − − − −

 − −
 − +
 
 
 − −
 − +
 
   

 
( ) ( )

( )

( )

2 2

1 211 1 1 22 2

2
12 1 21

11

2
12 1 21

22

( )
2

( )
2

a N N l a N N

a l a
N N

a l a
N N

< − − − −

+
− −

+
− −

 

 <0                    

Hence
4 1 2( , )D N N is asymptotically stable. Therefore, the 

equilibrium point 
4 1 2( , )D N N is globally asymptotically 

stable.  

6.  Bionomic Equilibrium 
The bionomic equilibrium is nothing but the combination 

of the concepts of biological equilibrium as well as 

economic equilibrium. A biological equilibrium is given 

by 1 0,
dN

dt
= 2 0

dN

dt
= . The economic equilibrium is said to 

be achieved when the total revenue obtained by selling 

the harvested biomass equals the total cost for the effort 

devoted to harvesting. Let 1c , 2c be fishing cost per unit 

effort of the first and second species respectively. Let 

1 2,p p  be price per unit biomass of the first and second 

species respectively. Therefore net revenue or economic 

rent at any time given by 1 2M M M= + . 

Where 1 1 1 1 1 1( )M p q N c E= −  is the net economic 

revenue for the first species and 

2 2 2 2 2 2( )M p q N c E= − is the net economic revenue for 

the second species at any time t. The bionomic 

equilibrium ( ) ( )( )1 2 1 2( ) , ( ) , ,N N E E∞ ∞ ∞ ∞
 is given by the 

following equations 
2

1 1 11 1 12 1 2 1 1 1 0a N N N N q E Nα α− − − =   (6.1) 

     
2

2 2 22 2 21 1 2 2 2 2 0a N N N N q E Nα α− − − =   (6.2) 

 ( ) ( )1 1 1 1 1 2 2 2 2 2 0M pqN c E p q N c E= − + − =        (6.3) 

 In order to determine the bionomic equilibrium we come 

across the following cases. 

Case (i):  If for the second species, fishing cost is greater 

than the revenue ( 2 2 2 2c p q N> ), then fishing of second 

species is not feasible. Hence fishing of first species 

population remains operational ( 1 1 1 1c p q N< ).  Thus, 

when  2 0E =   and  1 1 1 1c p q N<  we have  

( )1 1 1 1
/N c p q

∞
= , ( )2 1 1 1 11 1 12

( ) ( ) /N a q E Nα α∞ ∞= − −     

(6.4) 

Case (ii):  If the cost is greater than the revenue in the 

first species fishing, then the first species fishing will be 

closed (i.e. 1E
= 0).Only second species fishing remains 

operational.  

( )2 2 2 2/N c p q
∞

= , ( )1 2 2 2 22 2 21( ) ( ) /N a q E Nα α∞ ∞= − − −  
 

(6.5) 

Case (iii): If  1 1 1 1c p q N>  , 2 2 2 2c p q N>  , then the cost 

is greater than revenues for both the species and the 

whole fishery will be closed. 

Case (iv):  If  1 1 1 1c p q N<  , 2 2 2 2c p q N< , then  the 

revenues for both the species being  positive, then the 

whole fishery will be in operation. 

In this case   ( )1 1 1 1
/N c p q

∞
=    (6.6) 

                     ( )2 2 2 2/N c p q
∞

=    (6.7)  

Substitute (6.6) and (6.7) in (6.1), (6.2) we get 

( ) 1 11 1 1 1

1 1

12 2 2 2

( ) /
/

( ) /

a c p q
E q

c p q

α

α∞

− 
=  − 

      (6.8)  

( ) 2 22 2 2 2

2 2

21 1 1 1

( ) /
/

( ) /

a c p q
E q

c p q

α

α∞

− 
=  − 

  (6.9)

 ( )1 0E
∞

> if 

1 11 1 1 1 12 2 2 2[( ) / ] [ / ]a c p q c p qα α> +         (6.10)  

( )2 0E
∞

> if  

2 21 1 1 1 22 2 2 2[ / ] [ / ]a c p q c p qα α+ >          (6.11)   
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The Non-trivial Bionomic equilibrium point 

( )( )1 2 1 2
( ) , ( ) , ( ) ,N N E E∞ ∞ ∞ ∞

 exists, if (6.10) and 

(6.11) must hold. 
                                                           

7.  A Stochastic Model 
The main assumption that leads us to extend the 

deterministic model (2.1)-(2.2) to a stochastic 

counterpart is that it is reasonable to conceive the 

open sea as a noisy environment. There are many 

number of ways in which environmental noise 

may be incorporated in system (2.1)-(2.2). Note 

that environmental noise should be distinguished 

from demographic or internal noise, for which the 

variation over time is due. External noise may 

arise either form random fluctuations of one or 

more model parameters around some known mean 

values or from stochastic fluctuations of the 

population densities around some constant values.    

In this section, we compute the population 

intensities of fluctuations (variances) around the 

positive equilibrium 4D due to noise, according to 

the method introduced by Nisbet and Gunney 

(1982). Now we assume the presence of randomly 

fluctuating driving forces on the deterministic 

growth of the first and second species populations 

at time ‘t’, so that the system (2.1)-(2.2)results in 

the stochastic delay system with ‘additive noise’  

21
1 1 11 1 12 1 2 1 1 1 1 1( )

dN
aN N NN qEN t

dt
α α αξ= − − − +  (7.1) 

22
2 2 22 2 21 1 2 2 2 2 2 2( )

dN
a N N NN q E N t

dt
α α αξ= − − − +  (7.2) 

where 1( )N t  represents first species, 2 ( )N t  

represents second species.  1 2,α α  are real 

constants and  ( ) [ ]1 2( ), ( )t t tξ ξ ξ=  is a 2D 

Gaussian White noise process satisfying  

( ) 0; 1, 2
i

E t iξ  = =      

( ) ( ) ( )' ' ; 1, 2
i j ij

E t t t t i jξ ξ δ δ  = − = = 
 

where  
ij

δ  is the Kronecker symbol; δ  is the δ -

dirac function.  

Let *

1 1( ) ( ) ;N t u t S= +  *

2 2( ) ( ) ;N t u t P= +  (7.3) 

1 1 ( )
;

dN du t

dt dt
=  2 2 ( )dN du t

dt dt
= ;  

Using (7.3), equation (7.1) becomes  

* 2 * 2

1 1 1 1 11 1 11( ) ( ) ( ) ( )u t a u t a S u t Sα α′ = + − −  
*

11 1 12 1 22 ( ) ( ) ( )u t S u t u tα α− −   
* * * *

12 1 12 2 12( ) ( )u t P u t S S Pα α α− − −  
*

1 1 1 1 1( )q E u t q E S− − 1 1 ( )tα ξ+    (7.4) 

The linear part of (7.4) is   
* *

1 11 1 12 2 1 1( ) ( ) ( ) ( )u t u t S u t S tα α α ξ′ = − − +   (7.5) 

Again using (7.3) equation (7.2) becomes 
* 2 * 2

2 2 2 2 22 2 22( ) ( ) ( ) ( )u t a u t a P u t Pα α′ = + − −
*

22 2 21 1 22 ( ) ( ) ( )u t P u t u tα α− −  

+ *

2 2 2 2 2 2 2( ) ( )q E u t q E P tα ξ− − +   (7.6) 

The linear part of (7.6) is 
* *

2 22 2 21 1 2 2( ) ( ) ( ) ( )u t u t P u t P tα α α ξ′ = − − +  (7.7) 

 Taking the Fourier transform on both sides of 

(7.5), (7.7) we get, 

( )* *

1 1 11 1 12 2( ) ( ) ( )i S u S uα ξ ω ω α ω α ω= + +% % %  (7.8) 

( )* *

2 2 21 1 22 2( ) ( ) ( )P u i P uα ξ ω α ω ω α ω= + +% % %  (7.9) 

The matrix form of (7.8),(7.9) is 

( ) ( ) ( )M uω ω ξ ω= %%     (7.10) 

where   

( )
( ) ( )

( ) ( )

A B
M

C D

ω ω
ω

ω ω

 
=  
 

 ;  ( ) 1

2

( )

( )

u
u

u

ω
ω

ω

 
=  
 

%
%

%

 ;  

( )
( )

( )
1

2

ξ ω
ξ ω

ξ ω

 
=  
  

%

%

%

; 

*

11( )A i Sω ω α= + ; *

12( )B Sω α= ; *

21( )C Pω α= ; 
*

22( )D i Pω ω α= +      (7.11) 

Eqn.(7.10) can also be written as    

( ) ( ) ( )
1

u Mω ω ξ ω
−

 =  
%%  

Let ( )
1

( )M Kω ω
−

  =  , therefore, 

( ) ( )( )u Kω ω ξ ω= %%                               (7.12) 

where 

( ) ( )

( ) ( )
( )

( ) ( )

( ) ( )

D B

M M
K

C A

M M

ω ω

ω ω
ω

ω ω

ω ω

 
− 

 =
 

− 
  

          (7.13) 

if the function ( )Y t  has a zero mean value , then 

the fluctuation intensity (variance) of it’s 

components in the frequency interval [ ], dω ω ω+  

is ( )YS dω ω  



International Journal of Statistika and Mathematika, ISSN: 2277- 2790 E-ISSN: 2249-8605, Volume 5, Issue 2, 2013 pp 39-44 

Copyright © 2013, Statperson Publications, Iinternational Journal of Statistika and Mathematika, ISSN: 2277- 2790 E-ISSN: 2249-8605, Volume 5 Issue 2    2013 

where ( )YS ω is spectral density of Y  and is 

defined as  

( )
2

( ) limY
T

Y
S

T

ω
ω

→∞
=

%

%

%
    (7.14) 

If  Y  has a zero mean value, the inverse transform 

of ( )YS ω is the auto covariance function  

( )
1

( )
2

i

Y YC S e d
ωττ ω ω

π

∞

−∞

= ∫    (7.15) 

The corresponding variance of fluctuations in 

( )Y t  is given by  

2 1
(0) ( )

2
Y Y YC S dσ ω ω

π

∞

−∞

= = ∫    (7.16) 

and the auto correlation function is the normalized 

auto covariance  
( )

( )
(0)

Y

Y

Y

C
P

C

τ
τ =     (7.17) 

For a Gaussian white noise process, it is  

( )
( ) ( )

ˆ
lim

ˆi j

i j

T

E
S

T
ξ ξ

ξ ω ξ ω
ω

→+∞

  
=

% %

 

( ) ( )
'

ˆ ˆ

2 2
' ( ) '

ˆ
ˆ ˆ

2 2

1
lim

ˆ

T T

i t t

i j
T

T T

E t t e dt dt
T

ωξ ξ − −

→+∞

− −

 =  ∫ ∫ % %  

ijδ=       (7.18) 

From (7.12), we have 

( ) ( ) ( )
2

1

; 1, 2i ij j

j

u K iω ω ξ ω
=

= =∑ %%   (7.19) 

From (7.14) we have 

( ) ( )
2

2

1

; 1,2
iu j ij

j

S K iω α ω
=

= =∑     (7.20) 

Hence by (7.16) and (7.20), the intensities of 

fluctuations in the variable ; 1, 2iu i =  are given 

by  
2

2
2

1

1
( ) ; 1,2

2iu j ij

j

K d iσ α ω ω
π

∞

= −∞

= =∑ ∫    (7.21) 

and by (7.13), we obtain  

1

2 2

2

1 2

1 ( ) ( )

2 ( ) ( )
u

D B
d d

M M

ω ω
σ α ω α ω

π ω ω

∞ ∞

−∞ −∞

  
= + 

  
∫ ∫  

2

2 2

2

1 2

1 ( ) ( )

2 ( ) ( )
u

A C
d d

M M

ω ω
σ α ω α ω

π ω ω

∞ ∞

−∞ −∞

  
= + 

  
∫ ∫   (7.22) 

where  ( ) ( ) ( )M R i Iω ω ω= +   (7.23) 

Real part of  

( )
2

2 2 * *

11 22 12 21( ) ( )M R S Pω ω ω α α α α = = − + −   (7.24) 

Imaginary part 

of ( )2 * * 2

22 11( ) ( )M I P Sω ω ωα ωα= = +  (7.25) 

Finally from (7.11) we get 

 2 2 * 2

11
( ) ( )A Sω ω α= + ; 

2 * 2

12( ) ( )B Sω α= ; 2 * 2

21( ) ( )C Pω α= ;
2 2 * 2

22( ) ( )D Pω ω α= +     (7.26) 

 

By substitution of (7.23), (7.11) in (7.22), we get,        

{ }
1

2 * 2

1 222

2 2 * 2

2 12

( )1 1

2 ( ) ( ) ( )
u

P
d

R I S

α ω α
σ ω

π ω ω α α

∞

−∞

  + 
 =  

+  +   
∫   (7.27) 

{ }2

2 2

2

2 * 2

1 11

* 2

2 21

1

( ) ( )1

( )2

( )

u

R I

S
d

P

ω ω
σ

α ω απ
ω

α α

∞

−∞

 
 

+ 
=   +  

  +  

∫
   (7.28) 

If we are interested in the dynamics of system 

(7.1)-(7.2) with either 1 0α =  or 2 0α =  then the 

population variances are  

If 1 0α = , then  

1

* 2
2 2 12

2 2

( ) 1

2 ( ) ( )
u

S
d

R I

α α
σ ω

π ω ω

∞

−∞

=
+∫    (7.29)   

2

* 2
2 2 21

2 2

( ) 1

2 ( ) ( )
u

P
d

R I

α α
σ ω

π ω ω

∞

−∞

=
+∫    (7.30) 

If 2 0α = , then 

1

2 2 * 21
222 2

1
( )

2 ( ) ( )
u P d

R I

α
σ ω α ω

π ω ω

∞

−∞

 = + +∫   (7.31) 

2

2 2 * 21
112 2

1
( )

2 ( ) ( )
u S d

R I

α
σ ω α ω

π ω ω

∞

−∞

 = + +∫   (7.32) 

 

8.  Numerical Simulation   

In this paper, we substantiate as well as augment 

our analytical findings through numerical 

simulations considering the following parameters. 

Example (1):  

1 11 12 1 1

2 22 21 2 2

6; 0.2; 0.05; 0.5; 10;

4; 0.3; 0.1; 0.5; 20

a a q E

a a a q E

α= = = = =

= = = = =
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Figure (8.1) 
Figure (8.1) shows that the variation of population against time, 

initially with 1 220; 10;N N= =  
 

Example(2): 

1 11 12 1 1

2 22 21 2 2

6; 0.2; 0.05; 0.5; 10;

4; 0.3; 0.1; 0.5; 20

a a q E

a a a q E

α= = = = =

= = = = =                                
  

 

 

 

 

 

 

 

 

 

 
Figure (8.2) 

Figure (8.2) shows that the variation of population against time 

initially with 1 210; 20;N N= =  

9.   Discussion and Concluding Remarks 
In this paper, a model of a competitive system with 

stochastic term was formulated. Initially we have 

discussed about the model without stochastic term and 

investigated the existence of equilibrium points, local 

stability by employing Routh-Hurwitz criteria, global 

stability by constructing Lyapunov function. We 

incorporated the stochastic term in the model, also we 

present spatial competition model that contains some 

important factors, and such as the population intensities 

of fluctuations (variances) around the positive 

equilibrium due to noise are computed and also analyzed 

the stability with graphical representation using Matlab. 

Some Numerical simulations for justifying the theoretical 

analysis are also provided. Here we studied about the 

competitive model by incorporating environmental 

fluctuations through additive White noise. The analytical 

results and numerical simulation of deterministic model 

suggest that the deterministic competitive model is stable. 

The stable nature of the system shows this situation in 

figures (8.1)-(8.2). Further for stochastic model system 

population vacancies characterize the stochastic stability 

of the system.  Therefore by contolling the environmental 

fluctuations, the existence of the system can be checked.   
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