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Introduction 
Many Mathematical models have been 

developed for controlling inventory and in the earlier 

models many researchers consider the constant demand 

rate which is a feature of static environment while the 

dynamic environment nothing is fixed or constant. So in 

most of the cases the demand for items increases with 

time. But most of the organizations are working towards 

increasing demand of their items with time. Basically 

the items that are stored for future use always loose part 

of their value with passage of time. In inventory this 

phenomenon is known as deterioration of items. The 

rate of deterioration is very small in some items like 

hardware, glassware, toys and steel. The items such as 

medicine, vegetables, gasoline alcohol, radioactive 

chemicals and food grains deteriorate rapidly overtime 

so the effect of deterioration of physical goods cannot 

be disregarded in many inventory systems.  The 

deterioration of goods is a realistic phenomenon in 

many inventory systems. The controlling of 

deteriorating items becomes a measure problem in any 

inventory system. The researchers have continuously 

modified the deteriorating inventory models so as to 

become more practicable and realistic. Initially Chare & 

Schrader [6] consider an inventory model with a 

constant rate of decay. Covert and Philip [5] extended 

Ghare and Schrader's model for variable rate of 

deterioration by assuming Weibull's two parameter 

distribution function. Later these models are modified 

by Philip [14], Mishra [11], Chakrabarty, Giri and 

Choudhary [4]. Hence the realistic models treat with a 

time varying deterioration rate. In the models mentioned 

above the inflation and time value of money have no 

significant role with inventory policy. It is realized that 

most of the countries are suffering from high inflation 

that leads decline of time value of money. Hence in 

many inventory models ignorance of inflation and time 

value of money is disregarded. Buzacott [2] developed 

an inventory model with inflation, several researchers 

developed their model by considering various inflation 

rate are time value of money. Bierman and thomas [1], 

Chandra and Bahner [3], Gor and Shah [7] Kuolung 

Huo [9], Mishra [12], Moon and Giri [13] developed the 

value able models by considering various inflation rate.

 In the traditional EOQ models the purchaser 

pays for his items as soon as he received the items but 

in business organizations the supplier may allow a 

credit period to encourage the customers delay in 

payment by the purchaser to the supplier in an alternate 

way of price discount. The valuable models in this 

regards are given by Goyal [8], Lio [10]. It is 

empirically observed that the failure and life expectancy 

of many items can be expressed in terms of Weibull 

distribution function. 

 In the present paper we consider a Weibull 

distribution function of two parameters for 

deterioration. The demand rate is considered as a linear 

function of time and solves the model analytically by 

numerical examples. 

Notations and Assumptions:- We consider the 

following assumptions  

 H = Length of finite planning 

Horizon. 

 R = (a+bt), Demand Rate 

 p = Selling price per unit at time t 

= o 

 P(t) = pe
rT

, Instantaneous selling 

price per unit. 

 C(t) = ce
rT 

, Instantaneous ordering 

cost per order. 

 Ie = Interest earned per annum by 

the Retailer. 
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 Ic = Interest charged in stock per 

annum by the supplier. 

 T1 = Allowable delay period during 

settlement of the account. 

 Q = Optimum ordering quantity. 

 T = Optimum length of cycle time. 

 θ(t) = αβt
β-1

 ,Weibull distribution, 

0<α<1, β>1. 

 r = inflation rate. 

 B = erH − 1  

 I (t) = Instantaneous inventory level 

 TC (T) = Total relevant cost over [O,H] 

 NP (T) = Total relevant profit over 

finite planning horizon. 

 Oc = Ordering cost 

 Dc = Deterioration cost 

 Hc = Holding cost 

 Ic = Interest charged for unsold 

items at initial time. 

 IE = Interest earned from sales 

during the permission 

   delay period [o, T1]. 

Hence total cost TC (T) = OC + DC + HC + IC - IE 

and the gross revenue  = R(P-C) e
rT 

Assumptions:- 

(i) Inflation rate is constant. 

(ii) Shortages are not allowed 

(iii) Lead time is zero.  

(iv) No repair or replacement of deteriorated 

items during the cycle. 

(v) At the end of trade credit period the 

customer pay off all units ordered and 

begins paying for the interest charged on 

the items in stock. 
 

 

Mathematical Formulation 
 Let H=nT, where n is the number of replenishments occur during the period H, be the planning horizon. Then the 

differential equation of instantaneous level of inventory I(t) is given by, 

( ) ( ) TtobtaIt
dt

dI
<<+−=+  ,θ

 

( ) TtobtaIt
dt

dI
<<+−=+ −  ,1βαβ

…… (1) 

With boundary conditions 

I(0) = Q, and I (T) =  0 

Then the solution of (1) is 

( ) ( ) ( )
( )

( )1122
tT

1

a
tT

2

b
tTatI

+β+β −
+β

αβ
−−+−= ( )

( )22

22

++ −
+

− ββ

β

αβ
tT

b
……… (2) 

  

 Using the initial condition I (o) = Q, Then the initial ordering of quantity is 

Q= 
( )2212

212

+
−

+
−+

++

β

αβ

β

αβ ββ
TbTabT

aT ………. .(3) 

The ordering cost or set up cost is given by  

Oc = A (o) + A (T) + A (2T) + ……..+ A {(n-1)T} 

Using A (t) = A e
rT

, then 

Oc = A + A e
rT

 + A
2rT

+------+ Ae
 (n-1) rT 

      
[ ]

1

1

−

−
=

rT

rH

e

eA
,   

where H = nT
  

    






++= −

2

1

12

rT

rT

1
ABe

rT  , where B = e
rH

 -1 

Thus 

Oc 







++= −

2

1

12

rT

rT

1
ABe rT

  -------- (4) 

The deterioration cost is given by 
Dc = I (o) – RT 

Dc = ( ) ( ) 







−

+
−

+
−

−

++

btT
TbTabT

e

BC

rT 22121
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β
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β
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The inventory holding cost is given by 

Hc = ( ) ( )∑ ∫
−

=

1n

ok

T

o

dttIKTCh
 

Hc = 
( ) ( ) 
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322321
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Depending upon the cycle time T and customer’s choice the    following two cases arise 
 

Case I: - Interest charged in [O, H] 

Since in [O, H], the cycle length T is greater than the permissible delay time T1, 

 Then the interest charged in [T1, T] is 
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−
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The Interest earned in [0, H] is given by  

IE1 = Ie ( ) ( )∑ ∫
−

=

+
1

 
1n

ok
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o
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The Average cost: - The total average cost per unit in the interval [o, H] is, 

TC (T) = [ ]11ccc IEIcHDO
T

1
−+++

 

…… (9) 

Net Profit: - The net profit in the interval [o, H] is given by  
NP1 (T) = R (P-C)erT -TC (T)  

NP1 (T) = [(a+ bt) (P-C)erT- TC (T)]………..(10) 

For optimality condition of total average cost: - We have 
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Case II –Interest earned:-If the optimal cycle length T is less than the permissible delay time 1T then the interest earned 

during [0, H] is given by 1TT <  so  
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Numerical problem 

Let A = 100, a = 10, b = 5, C = 20, P = 30, r = 0.01 
α  = 0.05, β = 2.0, Η = 1 year, h = 0.03, Ie = 0.10, Ic = 0.15, 

 
T

1

30

365
=

, 
T =

×30 24

365 , 

At, t = 0, Then the total cost is TC (T) = 53317.035 

Numerical problem:- Let A = 100, a = 10, b = 5, C = 20, P = 30, r = 0.0125 
α  = 0.0625, β = 2.5, Η = 1 year, h = 0.03, Ie = 0.10, Ic = 0.15, 

 
T

1

30

365
=

, 
T =

×30 24

365 , 

And t = 0, Then the total cost is TC (T) = 256841.0801 
 

Conclusion 
Under Constant Weibull deterioration, keeping the parameters, optimum cycle time T and allowable credit period T1 

fixed and increase in parameter r (inflation rate) increases the total cost. Hence the model becomes more profitable and 

very useful in business organizations dealing with perishable products, domestic goods and other products. 
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