Contra \((\pi p, \mu_y)\)-Continuity on Generalized Topological Spaces

K. Binoy Balan*, C. Janaki**

*Assistant Professor, Dept. of Mathematics, Sree Narayana Guru College, Coimbatore- 105, Tamil Nadu INDIA.
**Assistant Professor, Dept. of Mathematics, L.R.G. Govt. Arts College for Women, Tirupur-4, Tamil Nadu INDIA.

Corresponding Addresses:
*binoy_snge@yahoo.co.in,"**jimakicsek@gmail.com

Abstract: In this paper we introduce a new notion called contra \((\pi p, \mu_y)\) – continuous function on generalized topological space. The properties and characterization of such functions are investigated.

Key words: \(\mu\)-\(\pi\)- space, \(\pi\)-\(\mu\)- space, \(\mu\)-\(\pi\)-\(\alpha\)-\(\beta\)- space, \(\mu\)-\(\pi\)-\(\alpha\)-\(\beta\)- space, \(\mu\)-\(\pi\)- connected, \(\mu\)-Urysohn, \(\mu\)-\(\pi\)- locally indiscrete, contra \((\pi p, \mu_y)\) – continuous, contra \((\pi p, \mu_y)\) – closed, \(\mu\)-\(\pi\)- open.

Mathematics subject classification: 54A05

1. Introduction

Á.Čsászár [3]-[13] has introduced the notions of generalized topological space, obtain characterizations for generalized continuous functions and associated interior and closure operators. In [5] he introduced characterizations for generalized continuous functions. Also in [3] he investigated the notions of \(\mu\)-\(\alpha\)-open sets, \(\mu\)- semi open sets, \(\mu\)- pre open sets and \(\mu\)-\(\beta\)- open sets in generalized topological space. W.K. Min [15] has introduced and studied the notions of \((\alpha, \mu)\) – continuous functions, \((\sigma, \mu_y)\) – continuous functions, \((\pi, \mu_y)\) – continuous functions, and \((\beta, \mu_y)\) – continuous functions in generalized topological spaces. Also D. Jayanthi [14] has introduced some contra continuous functions on generalized topological spaces such as contra \((\mu_1, \mu_y)\) – continuous functions, contra \((\alpha, \mu_y)\) – continuous, contra \((\sigma, \mu_y)\) – continuous functions, and contra \((\beta, \mu_y)\) – continuous functions. In this paper we introduce contra \((\pi p, \mu_y)\) – continuous functions and investigate their characterizations and relationships among these functions.

2. Preliminaries

We recall some basic concepts and results. Let \(X\) be a nonempty set and let \(\exp(X)\) be the power set of \(X\). \(\mu\in\exp(X)\) is called a generalized topology [5](briefly, GT) on \(X\), if \(\emptyset \in \mu\) and unions of elements of \(\mu\) belong to \(\mu\). The pair \((X, \mu)\) is called a generalized topological space (briefly, GTS). The elements of \(\mu\) are called \(\mu\)-open [3] subsets of \(X\) and the complements are called \(\mu\)-closed sets. If \((X, \mu)\) is a GTS and \(\mathcal{A}\subseteq \mathcal{X}\), then the interior of \(\mathcal{A}\) is the union of all \(\mu\)-open \(\mathcal{A}\in \mathcal{G}\) and the closure of \(\mathcal{A}\) is the intersection of all \(\mu\)-closed sets containing \(\mathcal{A}\).

Note that \(c_\mu(A) = X - i_\mu(X - A)\) and \(i_\mu(A) = X - c_\mu(X - A)\) [5].

Definition 2.1 [5] Let \((X, \mu)\) be a generalized topological space and \(\mathcal{A}\subseteq \mathcal{X}\). Then \(A\) is said to be

(i) \(\mu\)-semi open if \(\mathcal{A}\subseteq c_\mu(i_\mu(A))\).

(ii) \(\mu\)-pre open if \(\mathcal{A}\subseteq i_\mu(c_\mu(A))\).

(iii) \(\mu\)-\(\alpha\)-open if \(\mathcal{A}\subseteq c_\mu(i_\mu(A))\).

(iv) \(\mu\)-\(\beta\)-open if \(\mathcal{A}\subseteq c_\mu(i_\mu(A))\).

(v) \(\mu\)-\(\alpha\)-open [17] if \(A = i_\mu(c_\mu(A))\).

(vi) \(\mu\)-\(\alpha\)-open [2] if there is a \(\mu\)-r-open set \(U\) such that \(U\subseteq A\subseteq \mathcal{C}_\mu(U)\).

Definition 2.2 [2] Let \((X, \mu)\) be a generalized topological space and \(\mathcal{A}\subseteq \mathcal{X}\). Then \(A\) is said to be \(\mu\)-\(\pi\)-closed set if \(c_\mu(A) \subseteq U\) whenever \(\mathcal{A}\subseteq \mathcal{U}\) and \(U\) is \(\mu\)-increasing set. The complement of \(\mu\)-\(\pi\)-closed set is said to be \(\mu\)-open set.

The complement of \(\mu\)-semi open (\(\mu\)-pre open, \(\mu\)-\(\alpha\)-open, \(\mu\)-\(\beta\)-open, \(\mu\)-\(\alpha\)-\(\beta\)-open) set is called \(\mu\)-semi closed (\(\mu\)-pre closed, \(\mu\)-\(\alpha\)- closed, \(\mu\)-\(\beta\)- closed, \(\mu\)-\(\alpha\)-\(\beta\)- closed, \(\mu\)-\(\alpha\)-\(\beta\)- closed) set.

Let us denote the class of all \(\mu\)-semi open sets, \(\mu\)-pre open sets, \(\mu\)-\(\alpha\)-open sets, \(\mu\)-\(\beta\)-open sets, and \(\mu\)-\(\alpha\)-\(\beta\)-open sets on \(X\) by \(\sigma(\mu)\) (\(\sigma\) for short), \(\pi(\mu)\) (\(\pi\) for short), \(\alpha(\mu)\) (\(\alpha\) for short), \(\beta(\mu)\) (\(\beta\) for short) and \(\pi(\mu)\) (\(\pi\) for short)respectively. Let \(\mu\) be a generalized topology on a non empty set \(X\) and \(\mathcal{A}\subseteq \mathcal{X}\). The \(\mu\)-\(\alpha\)-interior (resp. \(\mu\)-\(\alpha\)-closure) of a subset \(S\) of \(X\) denoted by \(c_\mu(S)\) (resp. \(c_\mu(S)\), \(c_\mu(S)\), \(c_\mu(S)\)) is the intersection of \(\mu\)-closed(resp. \(\mu\)-semi closed, \(\mu\)-pre closed, \(\mu\)-\(\alpha\)-closed, \(\mu\)-\(\alpha\)-\(\beta\)-closed, \(\mu\)-\(\alpha\)-\(\beta\)-closed) sets including \(S\). The \(\mu\)-\(\alpha\)-interior (resp. \(\mu\)-\(\alpha\)-\(\beta\)-interior, \(\mu\)-\(\alpha\)-\(\beta\)-interior) of a subset \(S\) of \(X\) denoted by \(i_\mu(S)\) (resp. \(i_\mu(S)\), \(i_\mu(S)\), \(i_\mu(S)\)) is the union of \(\mu\)-\(\alpha\)-open (resp. \(\mu\)-semi open, \(\mu\)-pre open, \(\mu\)-\(\alpha\)-\(\beta\)-open, \(\mu\)-\(\alpha\)-\(\beta\)-open) sets contained in \(S\).

Definition 2.3 [2] A space \((X, \mu)\) is called \(\mu\)-\(\pi\)-\(\alpha\)-\(\beta\) space if every \(\mu\)-\(\pi\)-\(\alpha\)-\(\beta\)- closed set is \(\mu\)-pre closed.

Definition 2.4 [2] Let \((X, \mu)\) be a generalized topological space and let \(x\in X\), a subset \(N\) of \(X\) is said to be \(\mu\)-\(\alpha\)-\(\beta\)-nbhd of \(x\) iff there exists a \(\mu\)-\(\alpha\)-\(\beta\)- open set \(G\) such that \(x\in G\subseteq N\).

Definition 2.5 [2] A function \(f\) between the generalized topological spaces \((X, \mu)\) and \((Y, \mu)\) is called
(i) \((\mu_1, \mu_2, \pi_\alpha)\) - \(\pi\alpha\) - continuous function if \(f^{-1}(A)\in\mu_\pi\)
\(\pi\alpha\) \((X, \mu_\pi, \mu_\pi)\) for each \(A \in (Y, \mu_\pi)\).
(ii) \((\mu_1, \mu_2, \pi_\alpha)\) - irresolute function if \(f^{-1}(A)\in\mu_\pi\)
\(\pi\alpha\) \((X, \mu_\pi, \mu_\pi)\) for each \(A \in (Y, \mu_\pi)\).

Definition 2.6 [14] Let \((X, \mu_\pi)\) and \((Y, \mu_\pi)\) be GTS’s. Then a function \(f: X\rightarrow Y\) is said to be:

(i) \(\mu\)-\((\mu_\pi, \mu_\pi)\) - continuous if for each \(\mu\)-\open \(\mu\)-\closed \(X\), \(f^{-1}(U)\) is \(\mu\)-\closed \(X\).
(ii) \((\alpha, \mu_\pi)\) - continuous if for each \(\mu\)-\open \(\mu\)-\closed \(X\), \(f^{-1}(U)\) is \(\mu\)-\closed \(X\).
(iii) \((\beta, \mu_\pi)\) - continuous if for each \(\mu\)-\open \(\mu\)-\closed \(X\), \(f^{-1}(U)\) is \(\mu\)-\closed \(X\).

3. Contra \((\pi\alpha, \mu_\pi)\) - continuous functions

Definition 3.1 Let \((X, \mu_\pi)\) and \((Y, \mu_\pi)\) be GTS’s. Then a function \(f: X\rightarrow Y\) is said to be \(\mu\)-\((\pi\alpha, \mu_\pi)\) - continuous, if for each \(\mu\)-\open \(X\), \(f^{-1}(U)\) is \(\pi\alpha\)-\closed \(X\).

Theorem 3.2 (i) Every contra \((\mu_\pi, \mu_\pi)\) - continuous function is contra \((\pi\alpha, \mu_\pi)\) - continuous.
(ii) Every contra \((\alpha, \mu_\pi)\) - continuous function is contra \((\pi\alpha, \mu_\pi)\) - continuous.
(iii) Every contra \((\beta, \mu_\pi)\) - continuous function is contra \((\pi\alpha, \mu_\pi)\) - continuous.

Proof: Straightforward. Converse of the above statement is not true as shown in the following examples.

Remark: contra \((\pi\alpha, \mu_\pi)\) - continuous and contra \((\alpha, \mu_\pi)\) - continuous, contra \((\beta, \mu_\pi)\) - continuous are independent concepts.

Example 3.3 Let \(X = \{a, b, c, d\}\). Consider a generalized topology \(\mu_\pi = \{\emptyset, \{a\}, \{a, b, c\}\}\) on \(X\) and define \(f: (X, \mu_\pi)\rightarrow (X, \mu_\pi)\) as follows \(f(a) = d\) \(f(b) = d\) \(f(c) = b\) \(f(d) = a\). Then \(f^{-1}([a]) = \{c, d\}\), \(f^{-1}([a, b, c]) = \{c, d\}\).

We have \(f\) is contra \((\pi\alpha, \mu_\pi)\) - continuous but not contra \((\alpha, \mu_\pi)\) - continuous and contra \((\beta, \mu_\pi)\) - continuous.

Example 3.4 Let \(X = \{a, b, c\}\). Consider two generalized topologies \(\mu_\pi = \{\emptyset, \{a\}, \{a, b, c\}\}\) on \(X\) and \(Y\) respectively. Define \(f: (X, \mu_\pi)\rightarrow (Y, \mu_\pi)\) as follows \(f(a) = b\), \(f(b) = a\) and \(f(c) = c\). Then \(f^{-1}([c]) = \{c\}\). We have \(f\) is contra \((\pi\alpha, \mu_\pi)\) - continuous but not contra \((\alpha, \mu_\pi)\) - continuous.

Example 3.5 Let \(X = \{a, b, c\}\). Consider two generalized topologies \(\mu_\pi = \{\emptyset, \{a\}, \{a, b, c\}\}\) on \(X\) and \(Y\) respectively. Define \(f: (X, \mu_\pi)\rightarrow (Y, \mu_\pi)\) as follows \(f(a) = b\), \(f(b) = c\) and \(f(c) = c\). Then \(f^{-1}([c]) = \{b, c\}\). We have \(f\) is contra \((\pi\alpha, \mu_\pi)\) - continuous but not contra \((\alpha, \mu_\pi)\) - continuous, contra \((\beta, \mu_\pi)\) - continuous and contra \((\sigma, \mu_\pi)\) - continuous.

Example 3.6 Let \(X = \{a, b, c, d\}\). Consider a generalized topology \(\mu_\pi = \{\emptyset, \{a\}, \{a, b, c\}\}\) on \(X\) and \(Y\) respectively. Define \(f: (X, \mu_\pi)\rightarrow (X, \mu_\pi)\) as follows \(f(a) = d\), \(f(b) = a\) and \(f(c) = d\). Then \(f^{-1}([a]) = \{b\}\), \(f^{-1}([a, b, c]) = \{b\}\). We have \(f\) is contra \((\pi\alpha, \mu_\pi)\) - continuous and contra \((\beta, \mu_\pi)\) - continuous but not contra \((\alpha, \mu_\pi)\) - continuous.
Definition 3.11 A generalized topological space (X, μ_x) is called (i) μ-π locally indiscrete if every μ-π open set is μ-closed.

(ii) $T_{\pi\mu}$-space if every μ-π closed set is μ-pre closed.

(iii) μ-π space if every μ-π closed set is μ-closed.

Theorem 3.12 Let (X, μ_x) and (Y, μ_y) be two GTS’s.

(i) If a function f: (X, μ_x)→(Y, μ_y) is a (μ, μ_y)-continuous and (X, μ_x) is μ-π locally indiscrete then f is contra (τ_π, μ_y)-continuous.

(ii) If a function f: (X, μ_x)→(Y, μ_y) is a contra (τ_π, μ_y)-continuous and (X, μ_x) is μ-π $\Gamma_{1/2}$ space then f is contra (τ_π, μ_y)-continuous.

(iii) If a function f: (X, μ_x)→(Y, μ_y) is contra (τ_π, μ_y)-continuous and (X, μ_x) is μ-π space then f is contra (μ_x, μ_y)-continuous.

(iv) If a function f: (X, μ_x)→(Y, μ_y) is contra (τ_π, μ_y)-continuous and (X, μ_x) is $T_{\pi\mu}$ space then f is contra (β, μ_y)-continuous.

Proof: (i) Let V be an μ-open set in Y. By assumption $f^1(V)$ is μ-π open in X. Since X is μ-π locally indiscrete, $f^1(V)$ is μ-closed in X. Hence f is contra (μ_x, μ_y)-continuous.

(ii) Let V be an μ-open set in Y. By assumption $f^1(V)$ is μ-π closed in X. Since X is μ-π-$\Gamma_{1/2}$ space then $f^1(V)$ is μ-pre closed in X. Hence f is contra (τ_π, μ_y)-continuous.

(iii) Let V be an μ-open set in Y. By assumption $f^1(V)$ is μ-π closed in X. Since X is μ-π-$\Gamma_{1/2}$ space then $f^1(V)$ is μ-pre closed in X. But every μ-pre closed set is μ-β closed set. Therefore $f^1(V)$ is μ-β closed set in X. Hence f is contra (β, μ_y)-continuous.

Theorem 3.13 Let (X, μ_x) and (Y, μ_y) be two GTS’s and a function f: X→Y then the following are equivalent.

(i) The function f is (μ_x, μ_y)-π-continuous.

(ii) The inverse of each μ-open set is μ-π open.

(iii) For each x in (X, μ_x), the inverse of every μ-nbhd of $f(x)$ is μ-π nbhd of x.

(iv) For each x in (X, μ_x) and every μ-open set U containing $f(x)$ there exist a μ-π open set V containing x such that $f(V) \subseteq U$.

(v) $c_{\pi\mu}(A) \subseteq c_\mu(f(A))$, for every subset A of X.

Proof: (i) \Rightarrow (ii) Straightforward.

(ii) \Rightarrow (iii) Let $x \in X$. Assume that V be a μ-nbhd of $f(x)$, there exists a μ-open set U in Y such that $f(x) \in U \subseteq V$. Consequently $f^1(U)$ is μ-π open in X and $x \in \mu$-π $\subseteq f^1(V)$. Then $f^1(V)$ is μ-π $\subseteq V$.

(iii) \Rightarrow (iv) Let $x \in X$ and U be a μ-nbhd of $f(x)$. Then by assumption $V = f^1(U)$ is a μ-π nbhd of x and $f(V) = f(f^1(U)) \subseteq U$.

(iv) \Rightarrow (v) Let A be a subset of X, $f(x) \in c_{\pi\mu}(f(A))$. Then there exists a μ-open subset V of Y containing $f(x)$ such that $V \cap A = \emptyset$. Since X is μ-π $\subseteq V$. Hence $f(U) \cap A = \emptyset$ and $f(V) \cap A = \emptyset$.

Consequently $x \in c_{\pi\mu}(A)$ and $f(x) \in c_{\pi\mu}(f(A))$. Hence $f(c_{\pi\mu}(A)) \subseteq c_\mu(f(A))$.

(v) \Rightarrow (vi) Let f be a μ-closed subset of Y. Since $c_\mu(F) = F$ and by (vi) $f(c_{\pi\mu}(f(A))) \subseteq c_\mu(f(f^1(A)))$. Thus $f(c_{\pi\mu}(f(A))) \subseteq c_\mu(f(A))$.

This implies $c_{\pi\mu}(f(A)) \subseteq c_\mu(f(A))$ and $f^1(F)$ is μ-π closed.

Theorem 3.14 A function f: (X, μ_x)→(Y, μ_y) is (μ_x, μ_y) $-\pi$-continuous if and only if $f^1(U)$ is μ-π open in X, for every μ-open set U in Y.

Theorem 3.15 Let (X, μ_x) and (Y, μ_y) be two GTS’s. If a function f: X→Y is contra (τ_π, μ_y)-continuous and Y is μ-regular then f is (μ_x, μ_y) $-\pi$-continuous.

Proof: Let x be an arbitrary point of X and V be an μ-open set of Y containing $f(x)$. Since Y is μ-regular there exist an μ-open set W in Y containing $f(x)$ such that $c_\mu(W) \subseteq V$. Since f is contra (τ_π, μ_y)-continuous, by theorem 3.10 (iii) there exist a μ-π open set U of X containing x such that $f(U) \subseteq c_{\pi\mu}(W)$. Then $f(U) \subseteq c_{\pi\mu}(W) \subseteq V$. Hence f is (μ_x, μ_y) $-\pi$-continuous. Hence f is (μ_x, μ_y) $-\pi$-continuous.

Definition 3.16 Let f: (X, μ_x)→(Y, μ_y) be a function on GTS’s. Then the function f is said to be

(i) μ-π open, if the image of each μ-π open set in X is a μ-π open set in Y.

(ii) μ-π closed, if the image of each μ-π closed in X is μ-π closed in Y.

Definition 3.17[1] A GTS (X, μ_x) is said to be μ_x-connected if X is not the union of two disjoint non-empty μ-open subsets of X.
Definition 3.18 A GTS (X, μ_x) is said to be μ_x, π connected if X is not the union of two disjoint non empty μ_x, π open subsets of X.

Theorem 3.19 Let $f: (X, \mu_x) \rightarrow (Y, \mu_y)$ be a (μ_x, μ_y), π continuous surjection and if (X, μ_x) is μ_x, π connected then (Y, μ_y) is μ_y, π connected.

Proof: Let f be a (μ_x, μ_y), π continuous function of a μ_x, π connected space X onto Y. If possible let Y be μ_y disconnected. Let A and B form a disconnected of Y. Then A and B are μ_y open and $Y=A\cup B$ and $\cap A B=\emptyset$.

Since f is (μ_x, μ_y), π continuous surjection function, $X=f^{-1}(Y)=f^{-1}(A\cup B)=f^{-1}(A)\cup f^{-1}(B)$, where $f^{-1}(A)$ and $f^{-1}(B)$ are non empty μ_x, π open sets in X. Also $f^{-1}(A)\cap f^{-1}(B)=\emptyset$. Hence X is not μ_x, π connected. This is a contradiction. Therefore Y is μ_y, π connected.

Definition 3.20 A GTS (X, μ_x) is said to be

(i) μ_x, π T_1 if for each pair of distinct points x and y in X, there exist two disjoint μ_x, π open sets U and V in X such that $x \in U$, $y \in V$ and $y \in V$, $x \in V$.

(ii) μ_x, π T_2 if for each pair of distinct points x and y in X, there exist disjoint μ_x, π open sets U and V containing x and y respectively.

Definition 3.21 A GTS (X, μ_x) is said to be μ_x-Urysohn space if for each pair of distinct points x and y in X, there exists μ_x open sets U and V such that $x \in U$ and $y \in V$.

Theorem 3.22 Let (X, μ_x) and (Y, μ_y) be GTS’s. If the following three assumptions are satisfied

(i) for each pair of distinct points x and y in X there exists a function f of X into Y such that $f(x) \neq f(y)$.

(ii) (Y, μ_y) is a π-Urysohn space.

(iii) f is a π, μ_y connected at x and y.

Then (X, μ_x) is μ_x, π T_2.

Proof: Let x and y be any distinct points in X. By assumption (i) there exists a function $f: X \rightarrow Y$ such that $f(x) \neq f(y)$. Let $a = f(x)$ and $b = f(y)$. Since Y is a μ_y, π-Urysohn space then there exists μ_y open sets V and W containing a and b respectively such that $c_{\mu_y}(V) \cap c_{\mu_y}(W) = \emptyset$.

Since f is π, μ_y –continuous at x and then there exists μ_x, π open sets A and B containing x and y respectively such that $f(A) \subseteq c_{\mu_y}(V)$ and $f(B) \subseteq c_{\mu_y}(W)$. Then $f(A) \cap f(B) = \emptyset$. So $A \cap B = \emptyset$. Hence X is μ_x, π T_2.

For a map $f: (X, \mu_x) \rightarrow (Y, \mu_y)$, the subset $\{(x, f(x)) : x \in X\} \subset X \times Y$ is called the graph of f and is denoted by $G(f)$.

Theorem 3.23 Let (X, μ_x) and (Y, μ_y) be GTS’s. Let $f: X \rightarrow Y$ be a map and $g: X \times X$ the graph function of f defined by $g(x) = (x, f(x))$ for every $x \in X$.

If g is contra (μ_y, μ_y)- continuous then f is contra (μ_y, μ_y)-continuous.

Proof: Let U be an μ_y-open set in Y. Then $X \times U$ is an μ_x-open set in $X \times Y$. Since g is contra (μ_y, μ_y)-continuous then $f^{-1}(U) = g^{-1}(X \times U)$ is μ_x-closed in X. Hence f is contra (μ_y, μ_y)-continuous.

Definition 3.24 The graph $G(f)$ of a map $f: (X, \mu_x) \rightarrow (Y, \mu_y)$ is said to be contra μ_x, μ_y-closed if for each $(x, y) \in (X \times Y)$, $G(f)$, there exist an μ_x, μ_y open set U in X containing x and a μ_y closed set V in Y containing y such that $(U \times V) \cap G(f) = \emptyset$.

Lemma 3.25 Let $G(f)$ be the graph of a map $f: (X, \mu_x) \rightarrow (Y, \mu_y)$ between GTS’s. For any subset $A \subseteq X$ and $B \subseteq Y$, $f(A) \cap B = \emptyset$ if and only if $(A \times B) \cap G(f) = \emptyset$.

Proposition 3.26 The following properties are equivalent for the graph $G(f)$ of a map f in GTS’s.

(i) $G(f)$ is contra (μ_y, μ_y) –closed.

(ii) For each $(x, y) \in (X \times Y)$, $G(f)$, there exist an μ_x, μ_y open set U in X containing x and a μ_y-closed V in Y containing y such that $f(U) \cap V = \emptyset$.

Theorem 3.27 Let (X, μ_x) and (Y, μ_y) be two GTS’s. If $f: X \rightarrow Y$ is contra (μ_y, μ_y) –continuous and Y is μ_y-Urysohn space, then $G(f)$ is contra (μ_y, μ_y) –closed in $X \times Y$.

Proof: Let $(x, y) \in (X \times Y) G(f)$. It follows that $f(x) \neq y$ and Y is μ_y-Urysohn space then if for each distinct points x and y in X there exists μ_x open sets B and C such that $f(x) \notin B$ and $y \notin C$ and $c_{\mu_x}(B) \cap c_{\mu_x}(C) = \emptyset$. Since f is contra (μ_y, μ_y) –continuous then there exists an μ_x, μ_y closed set A in X containing x such that $f(A) \cap c_{\mu_x}(B)$. Therefore $f(A) \cap c_{\mu_x}(B) = \emptyset$ and $G(f)$ is contra (μ_y, μ_y) –closed in $X \times Y$.

Theorem 3.28 Let (X, μ_x) and (Y, μ_y) be two GTS’s. Let $f: X \rightarrow Y$ have a contra (μ_y, μ_y) closed graph. If f is injective then X is μ_x, π T_1.

Proof: Let x_1 and x_2 be any two distinct points of X. We have $(x_1, f(x_2)) \in (X \times Y) G(f)$ and there exist an μ_x, π open set U in X containing x_1 and a μ_y-closed set V in Y containing x_2 such that $f(U) \cap F = \emptyset$.

Hence $U \cap f^{-1}(F) = \emptyset$. Therefore we have $x_2 \notin U$. This implies that X is μ_x, π T_1.

Theorem 3.29 Let (X, μ_x), (Y, μ_y), and (Z, μ_z) be GTS’s. Let $f: X \rightarrow Y$ be surjective, (μ_x, μ_y) –π irresolute and μ_x, μ_z π connected and $g: Y \rightarrow Z$ be any function. Then $g \circ f$ is contra (μ_x, μ_z) –π continuous if and only if g is contra (μ_x, μ_z) –continuous.

Proof: Suppose $g \circ f$ is contra (μ_x, μ_z) –continuous. Let F be any μ_x-open set in Z. Then $(g \circ f)^{-1}(F) = f^{-1}(g^{-1}(F))$ is μ_x, π-closed in X. Since f is μ_x, π-closed and surjective, $f^{-1}(g^{-1}(F)) = g^{-1}(F)$ is μ_x, π-closed in X.
in Y and we obtain that \(g \) is contra \((\pi_\mu, \mu_y)\) – continuous.

Conversely, suppose \(g \) is contra \((\pi_\mu, \mu_y)\) – continuous. Let \(V \) be \(\mu \)-open in \(Z \). Then \(g^{-1}(V) \) is \(\mu\)-\(\pi \)-closed in \(Y \). Since \(f \) is \((\mu_x, \mu_y)\) – irresolute, \(f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V) \) is \(\mu\)-\(\pi \)-closed in \(X \) and so \(g \circ f \) is contra \((\pi_\mu, \mu_y)\) – continuous.

References
2. K. Binoy Balan and C. Janaki, \(\mu\)-\(\pi \)-\(\alpha \) closed sets in generalized topological space, Int.Journal of Adv.sci.and Tech. research,2(6),(2012), 352-359.