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Abstract: This paper studies a bivariate repairable system with
one repairman is studied. Assume that the system after repair is
not ‘as good as new’ and also the successive working times form
a decreasing ¥ -series process, the successive repair time’s form
an increasing geometric process and both the processes are
exposing to Weibull failure law. Under these assumptions, we
study an optimal replacement policy N in which we replace the
system when the number of failures of the system reaches N. We
derive an explicit expression for the long-run average cost per
unit of time for the bivariate replacement policy (T,N) under
which we replace the system when the number of failures
reaches N or the age of the system reaches T or whichever
occurs first. Under some mild conditions, we determine an
optimal repair replacement policy N* such that the long run
average cost per unit time is minimized. Numerical results are
provided to support the theoretical results.
Key Words: Convolution, Geometric process, Monotone
Processes- & -series process, Repair replacement
policy, Renewal Process.

1. Introduction

Most maintenance models developed
under the common assumption is that repair is perfect,
i.e., repair restores the system to a “good as new”
condition, and it is called a perfect repair model.
However, perfect repair is not always satisfied. In
practical application, most repairable systems are
deteriorating due to ageing and accumulative wear.
Barlow and Hunter [1] introduced a minimal repair
model in which the repair activity doesn’t change the
failure rate of the system. Brown and Proschan [3]
proposed an imperfect repair model in which the repair
is equivalent to a perfect repair with probability ‘p’ and
to a minimal repair with probability 1-p (0<p<1). Much
research work has been carried out by Lam [7], Stadje
and Zukerman [9], Stanley [10], Wang and Zhang [11,
12], Zhang et.al [15, 17] , Zhang [13,16], Zhang and
Wang [18] and others along this direction. In
application, because of the ageing effect and the
accumulated wearing, most systems are degenerative in
the sense that the consecutive working time between
failures will be shorter and shorter, while the
consecutive repair time after failures are getting longer
and longer. In other words, the successive operating

time are stochastically non- increasing, while the
consecutive repair time are stochastically non-
decreasing. To model such a deteriorating system, Lam
[5.6] proposed a geometric process repair model. Using
this model, Lam discussed two kinds of replacement
polices known as policy T which based on the working
age of the system while the other is called policy N
which is based on the cumulative number of failures of
the system. Under these two kinds of replacement
polices explicit expressions are developed by
minimizing the long run average cost per unit of time.
Further he also showed that policy N is better than
policy T. Zhang [14] also generalized Lam’s [5,6] work
using a Dbivariate replacement policy, called
policy(T,N), under which the system is replaced at the
working age T or at the time of the N™ failure,
whichever occurs first, and proved that the bivariate
policy is better than the uni-variate replacement
policies, policy N and policy T. Later, Zhang [18]
proposed optimal replacement policies for the
maintenance problems by generalizing Zhang’s [14]
work.

Braun etal [2] explained the increasing
geometric process grows at most logarithmically in
time, while the decreasing geometric process is almost
certain to have a time of explosion. The ¢ -series
process grows either as a polynomial or exponential in
time. It also noted that the geometric process doesn’t
satisfy a central limit theorem, while the  -series
process does. Further, Braun et.al [4] presented that
both the increasing geometric process and the & -series
process have a finite first moment under certain general
conditions. Thus the decreasing ¢ -series process may
be more appropriate for modeling system working
times while the increasing geometric process is more
suitable for modeling repair times of the system.

Based on this understanding, in this paper, we
proposed two different monotone processes, which is a
generalization to geometric processes proposed by Lam
[5,6].Further, we discussed the model and optimal
solution for a bivariate policy (T,N) under which the
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system is replaced at working age T or at the time of N
failure, whichever occurs first exposing to two
monotone process. The objective is to determine the
optimal replacement policy (T,N)* such that the long
run average cost per unit time is minimized. The
explicit expression of the long run average cost per unit
time is derived and the corresponding optimal
replacement policy can be determined analytically or
numerically. We prove that the optimal policy (T,N)* is
better than the optimal policy N* for a simple
repairable system.

In modeling of these deteriorating systems we
utilize definitions given in Lam [5] .
Definition 1:  Given two random variables X and Y,
if P(X>t) > P(Y>t) for all real t, then X is called
stochastically larger than Y or Y is stochastically less
than X. This is denoted by X >4 Y or Y <y X
respectively.
Definition 2:  Assume that {Y,, n=1.2,....}, is a
sequence of independent non-negative random
variables. If the distribution function of X,, is F, (t) =
F(a"'lt) for some a > 0 and all n=1,2,3,...., then {Y,,
n=1,2,...,} is called a geometric process, ‘a’ is the ratio
of the geometric process.
Obviously:
if a>1, then {Y,, n=1,2,....} is stochastically
decreasing, i.e, Y, >¢ Ypi ,0=1,2,...;
if  O<a<l, then {Y,, n=1,2,....} is stochastically
increasing, i.e, Y, <g Yn41, 0=1,2,;
if a=1, then the geometric process becomes a renewal
process.
Definition 3: Assume that {X,, n=1,2,....}, is a
sequence of independent non-negative random
variables.  If the distribution function of X, is

F,(t) = F(k“t) for some & >0 and all n=1, 2, 3...

then {X,, n=1, 2...} is called an & series process, &
is called exponent of the process. Braun ez. al [12].
Obviously:

if a>0, then {X,, n=1,2,....} 1is stochastically
decreasing, i.e, X, > Xp41 , 0=1,2,...;

if a <0, then {X,, n=1,2,....} is stochastically
increasing, i.e., X, <g Xn+1 , n=1,2,;

if & =0, then the & series process becomes a renewal
process.

2. The Model
In this section, we develop a model for the bi-
variate optimal replacement policy for the system
specializing to two monotone processes by minimizing
the long-run expected reward per unit time with the
following assumptions:
ASSUMPTIONS
1. At the beginning, a new system is installed.
The system will be replaced some time by a
new and identical one, and the replacement
time is negligible.
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2. Let X, and Y, be the successive working time
follows decreasing a & -series process and the
successive repair time’s form an increasing
geometric process respectively and both the
processes are exposing to weibull failure law
with parameters A and p respectively. A
sequence {Xx,, n=1,2,...... } and sequence {Y,,
n=I1, 2, .....} are independent.

2. Let F(K“x) and G(a""y)be the distribution

function of Xn and Y, respectively, and both
are distributed according to weibull failure law.

3. E(Xk)=kia and  E(Y,)=—% wherea>0, 0<a<l.
a

4. The constant repair cost rate is C, and the
constant revenue rate whenever the system
working is C,, and the replacement cost is C.

5. The replacement policy (T, N) is used.

3. Optimal Solution

Using the assumptions on the model, it is
determined an optimal replacement policy (T, N)* such
that the long-run expected reward per unit time is
maximum. Let T, be the first replacement time and let
T,(n>2)be the time between the (n-l)th replacement and
n® replacement. Clearly {T;,T5,...... ,} forms a renewal
process.

Let C(T,N) be the long-run average cost rate
per unit time under the replacement policy (T,N). Since
{T,,T,....,} forms a renewal process, the inter arrival
time between two consecutive replacements is a
renewal cycle. Thus according to the renewal reward
theorem [see Ross 8] we have:

C(N) = E(cost incurred in a renewal cycle)

Length of cycle

(3.1
Let L be the length of a renewal cycle of the
system under policy (T.N). Then

L=L +L, (3.2)
L= T+Zn:YjI{Un >T}
j=1 (3.3)
N N-1
L, =(Z X, +ZY,,]1(MN <T) G4
n=1 n=1

I is the indicator function such that
I, =1, if event A occurs
=0, if event a doesn’t occurs.
Now the expected length of a renewal cycle L can be
evaluated as follows:

E(L)=E| Ly |+E|[ Ly o | (3.5)

Lemma:Let {/, = Z x"=U,+w,_,n=12,..N-1
i=1

—n

then the expectation of indicator function I{U,< T <
Uy} is given by:
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T —_
E[Tuper vy |=[ Bra(@' (T =0, (1) = F,(T) = F (T), where n=12,...N-1.
0

(3.6)
E(L)= E[T + ZN:YjI{U,, > T}J
J=l 3.7)
N N-1
E(L,)= E(Z X, +)Y, ]E{I(MN <7}
n=1 n=l1 (38)

Now, using equation (3.6) in the above lemma, we
have:

F{ 1 |27 (1) SR ). (1) F, (1)

E(Ly)= E(ﬁx +ZYJFN(T) (3.10)
=1

n=1 n

] (3.9

—ZE(X )Fy (T)+ZE(Y )F,, (T) G.11)
n=1

Substltute the results in equations (3.9) and (3.11), in
equation (3.5)

N-1 N

E(L)=TF,(T)+ Y E(Y,)F,(T)+ Y E(X )F,(T) (12
n=1 n=1

Thus from equation (3.1) and (3.12) the long-

run expected average per unit time C(T,N) under policy

(T,N) is glven by

C, ZE(Y )F,(T)+C, ZE(X YFy(T)-C
C(T,N) n=1 n]

N

Z E(X,)F\y(T)+ Z E(Y,)F,(T)

n=1

(3.13)
When T—>oo, the optimal replacement policy
(T,N*) reduces to C(N) and which is given by:

c Zm )F, <w>+cy,2E<x )Fy ()= C
C(N,e0) = —2=
ZE(XH)FN (m)+ZE(Y,,)F,,(w)
. n=1 N n=1
C,Y EY)+C,> E(X,)-C
C(N)=—"= e

N

S E(X )+ Y E(Y,)

(3.14)
Now the expected length of working time can be
obtained as follows:

Let

X9 W (i), for k=123,

4. Numerical Results and Conclusions

, and i =12.

Then the distribution function of X ,Ei) , for
k=1,2,3,....and i=1,2is:

[k"‘x s
F,(x)=Fk“x)=1-e "/ ;x>0,8 <1.

By definition the expected length of working time is
given by :

E(x )= ["xaFk"x)  i=12. (3.15)
_M:é, where /1:7]11"(1+i], i=12.
k k By
(3.16)

The expected length of repair time of component 1 can
be obtained as follows:

Let Y ~W (y:7,,,) then the
function of ¥, for i=1,2, and k=1,2,3, ....,

as:

distribution

is given

=f
- | U
F(y)=F@'y)=1-e ;v>0,8,<1. By
definition, the expected length of repair time is:
E(?)=["yaF@y) i=12.
(3.17)

1
o) 1
J u )
= = =F , wherey:q/(l +EJ i=12.

(3.18)

Using equatlons 3. 15) and (3.18), we have:

cFHc3hoc
C(N)= N-1 N"];l'
”Z;bnfl ~ na (319)

In the next section, using this C(N) equation
given in (3.19), we determine the optimal value N*
through empirical results.

For the given hypothetical values of the parameters A, u,a , b, Cy, C,, and C the long-run average cost per unit time

is determined and is given in the following table: 4.1.
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Table 4.1: Values of the long-run average cost per unit time

For the given hypothetical For the given hypothetical values
values A=10,u=25,0=0.25, A=10,u=25,0=0.25,
C,,=100,C,=450, C,,=100,C,=450,
C=8000 b=0.95 C=8000 b=0.90
N C(N) C(N)
2 401.0486 401.0486
3 368.4716 369.9845
4 359.0672 362.6706
5 356.2385 362.0414
6 356.0372 364.0167
7 357.0761 367.1586
8 358.7558 370.8445
9 360.7815 374.7673
10 362.9947 378.7621
11 365.3047 382.7345
12 367.6569 386.6284
13 370.0176 390.4094
14 372.365 394.0566
15 374.6852 397.5576
16 376.9691 400.905
17 379.2106 404.0958
18 381.4059 407.1289
19 383.5526 410.0056
20 385.6492 412.7282
410
400
90
380
CiNj 370
50
10
330
1234567 8 910111213141516171819
N

Conclusions

1.

From the table 4.1 and graph 4.1, it is
examined that the long-run average cost per
unit time C (6) = 356.0372 is minimum for the
given b=0.95. Thus, we should replace the
system at the time of 6" failure.

Hor different values of the parameters, we
observed that as ‘b’ increases number of
failures increases, while ‘&’ decreases an
increase in the number of failure, which
coincides with the practical analogy and helps
the decision maker for making an appropriate
decision.
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