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Abstract:  This paper studies a bivariate repairable system with 

one repairman is studied. Assume that the system after repair is 

not ‘as good as new’ and also the successive working times form 

a decreasing α -series process, the successive repair time’s form 

an increasing geometric process and both the processes are 

exposing to Weibull failure law. Under these assumptions, we 

study an optimal replacement policy N in which we replace the 

system when the number of failures of the system reaches N. We 

derive an explicit expression for the long-run average cost per 

unit of time for the bivariate replacement policy (T,N) under 

which we replace the system when the number of failures  

reaches N or the age of the system  reaches T or whichever 

occurs first. Under some mild conditions, we determine an 

optimal repair replacement policy N* such that the long run 

average cost per unit time is minimized. Numerical results are 

provided to support the theoretical results. 

Key Words: Convolution, Geometric process, Monotone 

Processes-α -series process, Repair replacement 

policy, Renewal Process.  
 

1. Introduction 
   Most maintenance models developed 

under the common assumption is that repair is perfect, 

i.e., repair restores the system to a “good as new” 

condition, and it is called a perfect repair model. 

However, perfect repair is not always satisfied. In 

practical application, most repairable systems are 

deteriorating due to ageing and accumulative wear. 

Barlow and Hunter [1] introduced a minimal repair 

model in which the repair activity doesn’t change the 

failure rate of the system. Brown and Proschan [3] 

proposed an imperfect repair model in which the repair 

is equivalent to a perfect repair with probability ‘p’ and 

to a minimal repair with probability 1-p (0≤p≤1). Much 

research work has been carried out by Lam [7], Stadje 

and Zukerman [9], Stanley [10], Wang and Zhang [11, 

12], Zhang et.al [15, 17] , Zhang [13,16], Zhang and 

Wang [18] and others along this direction. In 

application, because of the ageing effect and the 

accumulated wearing, most systems are degenerative in 

the sense that the consecutive working time between 

failures will be shorter and shorter, while the 

consecutive repair time after failures are getting longer 

and longer. In other words, the successive operating 

time are stochastically non- increasing, while the 

consecutive repair time are stochastically non- 

decreasing. To model such a deteriorating system, Lam 

[5,6] proposed a geometric process repair model. Using 

this model, Lam discussed two kinds of replacement 

polices known as policy T which based on the working 

age of the system while the other is called policy N 

which is based on the cumulative number of failures of 

the system. Under these two kinds of replacement 

polices explicit expressions are developed by 

minimizing the long run average cost per unit of time. 

Further he also showed that policy N is better than 

policy T. Zhang [14] also generalized Lam’s [5,6] work 

using a bivariate replacement policy, called 

policy(T,N), under which the system is replaced at the 

working age T or at the time  of the N
th

 failure, 

whichever occurs first, and proved that the bivariate 

policy is better than the uni-variate replacement 

policies, policy N and policy T. Later, Zhang [18] 

proposed optimal replacement policies for the 

maintenance problems by generalizing Zhang’s [14] 

work.  

   Braun et.al [2] explained the increasing 

geometric process grows at most logarithmically in 

time, while the decreasing geometric process is almost 

certain to have a time of explosion. The α -series 

process grows either as a polynomial or exponential in 

time. It also noted that the geometric process doesn’t 

satisfy a central limit theorem, while the α -series 

process does. Further, Braun et.al [4] presented that 

both the increasing geometric process and the α -series 

process have a finite first moment under certain general 

conditions. Thus the decreasing α -series process may 

be more appropriate for modeling system working 

times while the increasing geometric process is more 

suitable for modeling repair times of the system.  

 Based on this understanding, in this paper, we 

proposed two different monotone processes, which is a 

generalization to geometric processes proposed by Lam 

[5,6].Further, we discussed the model and optimal 

solution for a bivariate policy (T,N) under which the 
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system is replaced at working age T or at the time of N
th
 

failure, whichever occurs first exposing to two 

monotone process. The objective is to determine the 

optimal replacement policy (T,N)* such that the long 

run average cost per unit time is minimized. The 

explicit expression of the long run average cost per unit 

time is derived and the corresponding optimal 

replacement policy can be determined analytically or 

numerically. We prove that the optimal policy (T,N)* is 

better than the optimal policy N* for a simple 

repairable system.  

 In modeling of these deteriorating systems we 

utilize definitions given in Lam [5] . 

Definition 1: Given two random variables X and Y, 

if P(X>t) > P(Y>t) for all real t, then X is called 

stochastically larger than Y or Y is stochastically less 

than X.  This is denoted by X >st Y or Y <st X 

respectively. 

Definition 2: Assume that {Yn, n=1,2,….}, is a 

sequence of independent non-negative random 

variables.  If the distribution function of Xn is Fn (t) = 

F(a
n-1

t) for some a > 0 and all n=1,2,3,…., then {Yn, 

n=1,2,…,} is called a geometric process, ‘a’ is the ratio 

of the geometric process. 

Obviously: 
if  a>1, then {Yn, n=1,2,….} is stochastically 

decreasing, i.e, Yn  >st Yn+1 , n=1,2,…; 

if  0<a<1, then {Yn, n=1,2,….} is stochastically 

increasing, i.e, Yn  <st Yn+1 , n=1,2,; 

if a=1, then the geometric process becomes a renewal 

process. 

Definition 3: Assume that {Xn, n=1,2,….}, is a 

sequence of independent non-negative random 

variables.  If the distribution function of Xn is  

)()( tkFtFn

α=  for some α  > 0 and all n=1, 2, 3… 

then {Xn, n=1, 2…} is called an α series process,  α  

is called exponent of the process. Braun et. al [12]. 

Obviously: 

if  α >0, then {Xn, n=1,2,….} is stochastically 

decreasing, i.e, Xn  >st Xn+1 , n=1,2,…; 

if  α <0, then {Xn, n=1,2,….} is stochastically 

increasing, i.e., Xn  <st Xn+1 , n=1,2,; 

if α =0, then the α series process becomes a renewal 

process. 
 

2. The Model 
 In this section, we develop a model for the bi-

variate optimal replacement policy for the system 

specializing to two monotone processes by minimizing 

the long-run expected reward per unit time with the 

following assumptions:  

ASSUMPTIONS 

1. At the beginning, a new system is installed. 

The system will be replaced some time by a 

new and identical one, and the replacement 

time is negligible. 

      2. Let Xn and Yn be the successive working time 

follows decreasing a α -series process and   the 

successive repair time’s form an increasing 

geometric process respectively and both the 

processes are exposing to weibull failure law 

with parameters λ and µ respectively. A 

sequence {xn, n=1,2,……} and sequence {Yn, 

n=1, 2, …..} are independent.  

2. Let )( xKF
α  and )(

)1(
yaG

n− be the distribution 

function of Xn and Yn respectively, and both 

are distributed according to weibull failure law.  
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4. The constant repair cost rate is Cr and the 

constant revenue rate whenever the system 

working is Cw and the replacement cost is C.  

5. The replacement policy (T, N) is used.  
 

3. Optimal Solution  
 Using the assumptions on the model, it is 

determined an optimal replacement policy (T, N)* such 

that the long-run expected reward per unit time is 

maximum. Let T1 be the first replacement time and let 

Tn(n≥2)be the time between the (n-1)
th

  replacement and 

n
th

 replacement. Clearly {T1,T2,……,} forms a renewal 

process. 

  Let C(T,N) be the long-run average cost rate 

per unit time under the replacement policy (T,N). Since 

{T1,T2….,} forms a renewal process, the inter arrival 

time between two consecutive replacements is a 

renewal cycle. Thus according to the renewal reward 

theorem [see Ross 8] we have:  

.
)(cos
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 Let L be the length of a renewal cycle of the 

system under policy (T.N).  Then 

21 LLL +=     (3.2) 
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I is the indicator function such that  

IA   = 1, if event A occurs 

      = 0, if event a doesn’t occurs. 

Now the expected length of a renewal cycle L can be 

evaluated as follows: 

{ } { }1 2( )
N NU T U T

E L E L I E L I
> ≤

   = +   
.  (3.5) 

Lemma:Let (1)

1

,  1, 2,.... 1
n

N i n N n

i

U X U W n N−

=

= = + = −∑  

then the expectation of indicator function I{Un< T < 

UN} is given by: 
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Now, using equation (3.6) in the above lemma, we 

have: 
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Substitute the results in equations (3.9) and (3.11), in 

equation (3.5) 
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 Thus from equation (3.1) and (3.12) the long-

run expected average per unit time C(T,N) under policy 

(T,N) is given by:  
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 When T�∞, the optimal replacement policy 

(T,N*) reduces to C(N) and which is given by:  
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Now the expected length of working time can be 

obtained as follows: 

Let 
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By definition the expected length of working time is 

given by : 
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The expected length of repair time of component 1 can 

be obtained as follows: 

Let ),:(~ 22

)( βηyWY
i

k  then the distribution 

function of 
( )i

kY  for i=1,2, and   k=1, 2, 3, …., is given 

as: 
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Using equations (3.15) and (3.18), we have: 
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 In the next section, using this C(N) equation 

given in (3.19), we  determine the optimal value N* 

through empirical results. 

  
 

4. Numerical Results and Conclusions 
  For the given hypothetical values of the parameters λ, µ,α , b, Cw, Cr,  and C  the long-run average cost per unit time 

is determined and is given in the following table: 4.1.  
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Table 4.1

 For the given hypothetical 

values λ=10,µ=25,

Cw=100,C

C=8000 b=0.95

N 

2 401.0486

3 368.4716

4 359.0672

5 356.2385

6 356.0372

7 357.0761

8 358.7558

9 360.7815

10 362.9947

11 365.3047

12 367.6569

13 370.0176

14 

15 374.6852

16 376.9691

17 379.2106

18 381.4059

19 383.5526

20 385.6492

 

Conclusions 
1. From the table 4.1 and graph 4.1, it is 

examined that the long-run average cost per 

unit time C (6) = 356.0372 is minimum for the 

given b=0.95. Thus, we should replace the 

system at the time of 6
th

 failure. 

2. Hor different values of the parameters,

observed that as ‘b’ increases number of 

failures increases, while ‘α ’ decreases an 

increase in the number of failure, which 

coincides with the practical analogy and helps 

the decision maker for making an appropriate 

decision. 
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4.1: Values of the long-run average cost per unit time 

For the given hypothetical 

values λ=10,µ=25,α=0.25, 

=100,Cr=450, 

C=8000 b=0.95 

For the given hypothetical values 

λ=10,µ=25,α=0.25, 

Cw=100,Cr=450, 

C=8000 b=0.90 

C(N) C(N) 

401.0486 401.0486 

368.4716 369.9845 

359.0672 362.6706 

356.2385 362.0414 

356.0372 364.0167 

357.0761 367.1586 

358.7558 370.8445 

360.7815 374.7673 

362.9947 378.7621 

365.3047 382.7345 

367.6569 386.6284 

370.0176 390.4094 

372.365 394.0566 

374.6852 397.5576 

376.9691 400.905 

379.2106 404.0958 

381.4059 407.1289 

383.5526 410.0056 

385.6492 412.7282 
 

 

From the table 4.1 and graph 4.1, it is 

run average cost per 

356.0372 is minimum for the 

e should replace the 

Hor different values of the parameters, we 

ed that as ‘b’ increases number of 

’ decreases an 

increase in the number of failure, which 

coincides with the practical analogy and helps 

the decision maker for making an appropriate 
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