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Research Article 
 

Abstract: Let �(�, �) be the probability density function of a 

random variable X, where functional form of pdf is known except 

for the parameter�. This parameter � can be a scalar or a vector. 

One of the most important tasks in statistical inference is of 

estimating � on basis of a random sample (��, ��, … , �
) drawn 

from the population. The traditional methods of parameter 

estimation are methods of moments, least squares, minimum chi-

square, maximum likelihood, minimum distance and recent one 

called method of probability weighted moment due to Greenwood 

et al [4]. Amongst all methods, Fisher [3] method of maximum 

likelihood is widely accepted and is considered as one of the best 

method for parameter estimation. Akaike [1] work paved the way 

for the information theoretic approach in parameter estimation.  

Lind and Solana [8] method is based on the principle of least 

information.  Kapur [6] compared the Gauss’ method of estimation 

with a method based on the principle of maximum entropy. In the 

present communication we have used Parameter estimation 

methods using entropy optimization principles and compare these 

with classical methods such as method of moments and method of 

m.l.e. The basic principle is that, subject to the information 

available we should choose  � in such a way that the entropy is as 

large as possible or the distribution as nearly uniform as possible. 

We have also derived some parameter estimation methods from 

entropy optimization principles, while their relation among 

methods of parameter estimation is also discussed. Further, the 

asymptotic behaviour of the estimator is also studied for 

exponential and geometric distribution.  
 

1. Introduction 
Let f(x, θ) be the probability density function of a random 

variable X, where functional form of probability density 

function is known except for the parameter θ. This 

parameter θ can be a scalar or a vector quantity. One of 

the most important task in statistical inference is of 

estimating the parameter θ on basis of a random sample 

(x1, x2,…,xn) drawn from the population. The most 

commonly used traditional methods of parameter 

estimation are: methods of moments, least squares, 

minimum chi-square, maximum likelihood, minimum 

distance and recent one called method of probability 

weighted moment due to Greenwood et al [4]. Amongst 

all these methods, Fisher [3] method of maximum 

likelihood is widely accepted, often used and is 

considered as one of the best method for parameter 

estimation. But with the growth of information theoretic 

methods in Statistics, efforts were made by researchers in 

using the information theory in estimating the parameters 

and other problems. 

Akaike [1] work paved the way for the information 

theoretic approach in parameter estimation. This paper 

gave the direction to researchers not only to estimate 

parameters but also of the model building. Further 

development took place for estimation when the 

information is not complete.  Lind and Solana [8] method 

is based on the principle of least information. Kapur [6] 

compared the Gauss’ method of estimation with a method 

based on the principle of maximum entropy. In this paper, 

we present a critical appraisal of parameter estimation 

methods using entropy optimization principles and 

compare these with classical methods such as method of 

moments and method of maximum likelihood. The basic 

principle is that, subject to the information available we 

should choose θ in such a way that the entropy is as large 

as possible or the distribution as nearly uniform as 

possible. In section 2, we discuss the problem of 

parameter estimation using maximum entropy principle. 

In section 3, we derive some parameter estimation 

methods from entropy optimization principles, while their 

relation among methods of parameter estimation is 

discussed in section 4. In section 5, we discuss method of 

parameter estimation using entropy optimization principle 

when population proportions are given and the asymptotic 

behaviour of the estimator is also studied for exponential 

and geometric distribution. 
 

2. Maximum Entropy Principle in Parameter 

Estimation 
In this section, we shall discuss the problem of parameter 

estimation using entropy optimization principle when 

along with the known form of density function, a random 

sample from the population is also given. Let us consider 

f(x, θ) as the given functional form of probability density 

estimation and we have to estimate the parameter θ for a 

given random sample x1,x2,..., xn from the population. 

Fisher [3] suggested the method of maximum likelihood 
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i.e.  θ should be chosen such that it maximizes the 

likelihood function 

     L (x,θ) = ∏
=

n

i 1

f (xi, θ)     (2.1) 

or log L (x, θ) =∑
=

n

i 1

 log f(xi, θ)   (2.2) 

Now a probability distribution can be formed such that 

 pi 

1

( , )

( , )

i
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f x
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θ
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=

∑
  ,   i = 1, 2,...,n                            (2.3) 

Where f (xi, θ) is the value of pdf at X = xi. For making 

pi's as equal as possible, we choose parameter θ such that 

it maximizes Burg’s[2] measure of entropy for this 

distribution. However, it may be noted that we can use 

any measure of uncertainty.  Burg’s entropy measure for 

probability distribution (p1, p2......., pn; pi > 0; 
1

n

i

i

p
=

∑ =1) 

is given by  

H (P) =

1

n

i=

∑ log pi                 (2.4) 

Substituting (2.3) in (2.4), we have 
H (P) =

1

1

( , )
log

( , )
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f x

θ

θ=

=

∑
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                  (2.5) 

For maximizing (2.5) w.r.t. θ, we put the first derivative 

of (2.4) w.r.t.θ equal to zero and thus we get 

∑ � �

(��,�) . �
(��,�)

�� �
��� − � ∑ ��(��,�)
������

∑ 
(��,�)����
= 0                              (2.6) 

But Fisher’s method of maximum likelihood requires to 

solve 

 

1
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n
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f x

f x

θ

θ θ=

 ∂
 

∂ 
∑ = 0 

Since

1

n

i=

∑ f (xi,θ) is not independent of θ, therefore (2.5) 

and (2.6) will give different estimates of θ. 

It is worth mentioning here that f(x1,θ), f(x2,θ),..., f(xn,θ) 

are not probabilities. Actually, these are the values of pdf 

at (��, ��, … , �
). Their sum is not necessarily unity or 

independent of θ as x1, x2,..., xn represents only a random 

sample and not all the values which the variate X can 

take. 
 

3. Principles of Entropy Optimization, Maximum 

Likelihood and Minimum Chi-Square 

In this section, we discuss the conventional estimation 

methods vis-a-vis entropy optimization principle. 

Principle of Maximum Likelihood: 

Let (��, ��, … , �
) be a random sample from a population 

with pdf f(x,θ). We choose 

or estimate parameter θ in terms of the sample values 

such that it maximizes likelihood function. But according 

to Maximum Entropy Principle, we choose the value of θ 

such that the uncertainty that remains after the sample 

values are known is as large as possible. Or, we can say 

that the entropy of the sample itself has to be a minimum. 

Thus, the sample entropy is given by 

.HS =

1

( , ) log ( , )
n

i i

I

f x f xθ θ
=

−∑    (3.1) 

        =

1

log
n

i i

i

p p
=

−∑
 

HS=− �

 !log �(��, �) + log �(��, �) + ⋯ + log �(�
, �)' 

                         

      = [ ]
1

log ( , )L x
n

θ−
    

(3.2) 

where L(x,θ ) is the maximum likelihood function given 

by (2.1). 

Thus, we choose θ  such that it minimizes the entropy of 

the sample or maximizes the likelihood function. It 

implies that maximum entropy principle leads to the 

principle of maximum likelihood. 

Now let us consider ( , )xφ θ as the cumulative density 

function of the second distribution in case of minimum 

cross entropy principle. We shall choose θ  such that for 

this value of θ  the distribution function f(x, θ ) is as 

close as possible to the distribution function determined 

by the random sample x1, x2,...., xn. 

Thus, Minimum Discrimination Information Statistic 

based on Kullback Leibler [7] measure is 

D ((': f) = 

1

'( , )
'( , ) log

( , )

n
i

i

i i

x
x

f x

φ θ
φ θ
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∑  
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1 1

'( , ) log '( , ) log ( , ) ( , )
n n

i i i i

i i

x x f x d xφ θ φ θ θ φ θ
= =

−∑ ∑             

(3.3) 

Equation (3.3.) attains minimum when its second part is 

maximum. It means, we choose θ which can maximize 

1

log ( , ) ( , )
n

i i

i

f x d xθ φ θ
=

∑  

= 1
� !log �(��, �) + log �(��, �) + ⋯ + log �(�
 , �)' 

= [ ]
1

log ( , )L x
n

θ     (3.4) 

Hence, we choose θ such as to maximize L(x, θ). Thus, 

both Maximum Entropy and Minimum Cross Entropy 

Principles lead to Maximum Likelihood Principle. 

Principle of Minimum Chi-square: 

Let us consider that there are n classes and 

1, 2 ,,.......,
n

Np Np Np  be the expected frequencies on the 

basis of parameter θ in these classes, where N is total 

frequency. Further, we consider that 
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1, 2 ,,.......,
n

Nq Nq Nq  are the observed frequencies in 

these n classes. Then we choose θ so as to minimize 

divergence measure D (P:Q) or     D (Q:P). 

Let  qi = pi +
i

ε  ,   where 
i

ε is very small 

Then 
1

0
n

i

i

ε
=

=∑ ,      since 

1 1

1
n n

i i

i i

p q
= =

= =∑ ∑  

We have, D (P: Q) = 

1

log
n

i
i

i i

p
p

q=

∑          (3.5) 

≅ �
� ∑ +�,-�


��� = �
� ∑ (.�/-�),

-�

���                   (3.6) 

  

Next, similarly we have 
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  (3.7) 

It may be pointed here that (3.6) corresponds to 

modified chi-square while (3.7) is chi-square statistic. 

Thus, from (3.6) and (3.7) we can infer that θ  is chosen 

to minimize either 
2

1

( )1

2

n
i i

i i

O E
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−
∑  or 

2

1

( )1

2

n
i i

i i

O E
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−
∑ , 

where Oi and Ei are observed and expected frequencies in 

the ith class and Ei’s are function of θ. 

Fisher’s Measure of Information (FMI) 
Let f(x, θ) = f and f (x, θ+∆θ) = g,  be the two density 

functions, then divergence measure of f from g is given 

by 

( : ) log
X

f
D f g f dx

g
= ∫  

( , ) ( , )
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∫ f (x, θ) dx = 1, therefore 

0
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dx

θ

∂
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∂∫
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2
0

X

f
dx

θ

∂
=
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 (3.8) and (3.9) together gives 

D (f: g) ( )
221 1 ( , )

( ) ...........
2 ( , )

X

f x
dx

f x

θ
θ

θ θ

∂
= ∆ +
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( )
21 ( , )

( , )
X

f x

f x

θ

θ θ

∂

∂∫  in (3.10) is called Fisher's 

information measure. It can be noted Fisher’s Measure of 

Information measures the power of discrimination or 

divergence between two density functions ( , )f x θ and 

( , )f x θ θ+ ∆ .Thus, greater the value of FMI, greater is 

the power of discrimination or it can be said that it gives 

us more information about θ. 

Fisher’s Measure of Information is different in many 

aspects from Shannon’s measure of information and 

Kullback-Leibler’s measure of divergence. Shannon’s 

measure of information gives us information about the 

probability density functions while FMI gives 

information about the estimators of population 

parameters. When interval is finite FMI measures the 

directed divergence of ( , )f x θ from ( , )f x θ θ+ ∆

,while Shannon’s measure gives the directed divergence 

of f (x, θ) from uniform density function. 

Fisher’s Measure of Information gives directed 

divergence of f (x, θ) from density function depending on 

both f and q, while Shannon's measure gives the directed 

divergence of f(x, θ) from a density function which is 

independent of both f and q. 

The Kullback-Leibler measure of directed divergence can 

discriminate between any two density functions f (x, θ) 

and g(x, θ) while FMI discriminate between f (x, θ) and 

( , )f x θ θ+ ∆ only. Thus, these measures have different 

purposes, while deciding the relative merits of 

information measures difficulty arises when the problems 

of discriminate are viewed in isolation.  In generalized 

model, these measures are considered in relation with the 

probability distribution and their moment. 
 

4. Equivalence of classical and information 

theoretic methods of parameter   estimation 
In this section, we have studied the relations between 

traditional and information theoretic methods of 

parameter estimation and observe that in most of cases 

these are equivalent. 

Entropy optimization Principle and Laplace’s 

principle of insufficient reasoning 

If the constraints are absent in Jaynes', Maximum Entropy 

Principle (MEP), and then maximization of uncertainty 

gives the uniform distribution. Thus, the Laplace 

principle is a special case of MEP. However, Hadgiswas 

[5] has shown that the MEP and the MDI principles can 

be deduced from the principle of insufficient reasoning 

and thus, MEP and MDI can be regarded as the special 

case of Laplace’s principle, while Laplace’s principle can 

be regarded as a particular case of MDI principle when 

there are no constraints and the prior distribution is 

uniform. 

Minimum discrimination Information and Maximum 

Likelihood principle 

In section 4.3, a correspondence between the MDI and 

Fisher’s maximum likelihood principle has been 



Sandeep Kumar, Parmil Kumar, Mamta Khajuria, Ameena Rajput 

Copyright © 2013, Statperson Publications, Iinternational Journal of Statistika and Mathematika, ISSN: 2277- 2790 E-ISSN: 2249-8605, Volume 6 Issue 2    2013 

established. Suppose we are given g(x) then we find f(x) 

which minimizes 
( )

( : ) ( ) log
( )

X

f x
D f g f x dx

g x
= ∫

 

 =

X

∫  f(x) log f(x) dx - 

X

∫ f(x) log g(x) dx         (4.1) 

and satisfies the given constraints or we may be given 

f(x) and have to find g(x) so that we have to maximize 

X

∫ (log g(x)) f(x) dx = 

X

∫ log g(x) dF(x),  (4.2) 

where F(x) is the cumulative distribution function of X.  

In section 3 we have shown that maximization of (4.2) 

correspond to maximization of the likelihood function. 

Thus, Maximum Likelihood Principle can be regarded as 

a special case of MDI principle. 

Entropy Optimization principle and Guiasu’s 

principle of Minimum Interdependence (PMI) 

If the probability distributions of the individual random 

variables are included in the set of constraints, as the 

marginal probability distributions of the joint probability 

distribution, the PMI is equivalent to the MEP. PMI is 

also a particular case of Kullback’s MDI principle if a 

priori joint probability density function is the independent 

product density of n individual variables. 
 

5. Estimation of parameter when interval 

proportions are given 
In this section, we discuss the problem of parameter 

estimation in case proportions in different intervals are 

given. 

Let us consider a random variate X over the interval [a,b] 

and let the random sample be arranged in order as 

a = x0 < x1 < x2 < …< xi < xi+1 < …< xn < xn+1 = b    (5.1)

                            

So that the interval [a, b] is divided into (n +1) 

subintervals and Q0, Q1,... ,Qn are the given proportions of 

the population in these (n + 1) subintervals. 

Let us define a probability function over subinterval (xi, 

xi+1) as 

Pi = 

1i

i

x

x

+

∫ f(x, θ) dx,          i = 0, 1, 2,.., n  (5.2) 

where θ is the population parameter. 

Thus, (P0, P1, ...., Pn) gives us a probability distribution 

depending on θ. Now, we have to choose parameter θ 

such that P0, P1,..., Pn are as close as possible to given Q0, 

Q1,..., Qn. This can be achieved by minimizing the 

measure of cross entropy or directed divergence. We can 

make use of any measure of cross entropy that gives rise 

to a convex function of θ. But here, we minimize the 

Kullback Leibler measure of cross entropy, 

D (Q: P)= 

0

log
n

i
i

i i

Q
Q

P=

∑ =

0 0

log log
n n

i i i i

i i

Q Q Q P
= =

−∑ ∑  (5.3) 

Minimization of (5.3) is same as maximization of

0

log
n

i i

i

Q P
=

∑ . So, we have to maximize 

0

log
n

i i

i

Q P
=

∑  = 
1i

i

x

x

+

∫ Qi log
1i

i

x

x

+

∫
 f (xi, θ) dx  (5.4) 

This principle have wide applications in estimating 

parameters when interval propertions are given to us, e.g. 

proportions of students in different intervals of marks 

obtained, proportion of failed equipments in different 

intervals of time etc. 

Let us consider the case when f(xi,θ), functional form of 

distribution is exponentially distributed with unknown 

parameter θ. Then, (4.5.4) reduces to maximize 
1

0

log
i

i

xn
x

i

i x

Q e dx
θφ θ

+

−

=

=∑ ∫ 1

0

log( )i i

n
x x

i

i

Q e e
θ θ+− −

=

= +∑  (5.5) 

The above principle is illustrated in the following 

example having randomly generated population data. We 

have simulated the results for different sizes of the 

random samples. 

Example:Let us consider a randomly generated 

population of size 50 (from exponential distributed with 

mean = 20) with interval proportions as 

Intervals:   0-10  10-20  20-30  30-40    40-50    >75 

Frequency:  19     13     4      4         7       3 
 

Qi = Proportion: 0.38    0.26   0.08   0.08   0.14      

0.06 

Here 

x0 = 0, x1 = 10, x2 = 20, x3 = 30, x4 = 40, x5 = 60, x6 = ∞, 

we choose θ which maximizes (4.5.5) i.e. 

( )φ θ 1

0

log( )i i

n
x x

i

i

Q e e
θ θ+− −

=

= +∑  

         

= 0.38 log 
10(1 )e

θ−−  + 0.26 log 10 20( )e eθ θ− −−  + 0.08 

20 30( )e eθ θ− −− + 0.08 30 40( )e eθ θ− −− + 0.14 40 50
( )e e

θ θ− −−  + 

0.06 
50

e
θ−

 

= - 15.2θ + 0.94 log 10
(1 )e

θ−−  
      (5.6) 

To maximize (5.6), differentiate it w.r.t. θ and put the 

resultant form equal to zero, we get  
10

'

10

0.94 10
( ) 15.2 0

1

e

e

θ

θ
φ θ

−

−

×
= − + =

−
 

1 24.6ˆ log
10 15.2

1
20.77

ˆ
mean

θ

θ

=

= ≅

  

The estimated value of the parameter is quite close to the 

population parameter value i.e. we have small bias. 

Further, we can study the asymptotic behaviour of the 

estimator. 
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Table 1: Exponential Distribution (Mean=20) 

Sample 

size 
MLE 

Estimates 

obtained by MEP 

Bias 

30 21 20.23 -0.23 

200 21.55 21.414 -1.414 

1000 21.8 20.18 -0.18 

10000 21.492 19.84 0.16 
 

Table 2: Geometric Distribution with p=0.2 

 

Fig.1 and Fig.2 shows the graph between the sample size 

and the estimates obtained by MLE, MEP and bias for 

geometric and exponential distribution respectively. 

 
Figure 1 

 
Figure 2 
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