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Abstract: Let f(x,0) be the probability density function of a
random variable X, where functional form of pdf is known except
for the parameterf. This parameter 8 can be a scalar or a vector.
One of the most important tasks in statistical inference is of
estimating 6 on basis of a random sample (xq, X, ..., x,) drawn
from the population. The traditional methods of parameter
estimation are methods of moments, least squares, minimum chi-
square, maximum likelihood, minimum distance and recent one
called method of probability weighted moment due to Greenwood
et al [4]. Amongst all methods, Fisher [3] method of maximum
likelihood is widely accepted and is considered as one of the best
method for parameter estimation. Akaike [1] work paved the way
for the information theoretic approach in parameter estimation.
Lind and Solana [8] method is based on the principle of least
information. Kapur [6] compared the Gauss’ method of estimation
with a method based on the principle of maximum entropy. In the
present communication we have used Parameter estimation
methods using entropy optimization principles and compare these
with classical methods such as method of moments and method of
m.l.e. The basic principle is that, subject to the information
available we should choose 6 in such a way that the entropy is as
large as possible or the distribution as nearly uniform as possible.
We have also derived some parameter estimation methods from
entropy optimization principles, while their relation among
methods of parameter estimation is also discussed. Further, the
asymptotic behaviour of the estimator is also studied for
exponential and geometric distribution.

1. Introduction

Let f(x, 0) be the probability density function of a random
variable X, where functional form of probability density
function is known except for the parameter 0. This
parameter O can be a scalar or a vector quantity. One of
the most important task in statistical inference is of
estimating the parameter 6 on basis of a random sample
(X1, X2,...,Xp) drawn from the population. The most
commonly used traditional methods of parameter
estimation are: methods of moments, least squares,
minimum chi-square, maximum likelihood, minimum
distance and recent one called method of probability
weighted moment due to Greenwood et al [4]. Amongst
all these methods, Fisher [3] method of maximum
likelihood is widely accepted, often used and is
considered as one of the best method for parameter
estimation. But with the growth of information theoretic
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methods in Statistics, efforts were made by researchers in
using the information theory in estimating the parameters
and other problems.

Akaike [1] work paved the way for the information
theoretic approach in parameter estimation. This paper
gave the direction to researchers not only to estimate
parameters but also of the model building. Further
development took place for estimation when the
information is not complete. Lind and Solana [8] method
is based on the principle of least information. Kapur [6]
compared the Gauss’ method of estimation with a method
based on the principle of maximum entropy. In this paper,
we present a critical appraisal of parameter estimation
methods using entropy optimization principles and
compare these with classical methods such as method of
moments and method of maximum likelihood. The basic
principle is that, subject to the information available we
should choose 0 in such a way that the entropy is as large
as possible or the distribution as nearly uniform as
possible. In section 2, we discuss the problem of
parameter estimation using maximum entropy principle.
In section 3, we derive some parameter estimation
methods from entropy optimization principles, while their
relation among methods of parameter estimation is
discussed in section 4. In section 5, we discuss method of
parameter estimation using entropy optimization principle
when population proportions are given and the asymptotic
behaviour of the estimator is also studied for exponential
and geometric distribution.

2. Maximum Entropy Principle in Parameter
Estimation

In this section, we shall discuss the problem of parameter
estimation using entropy optimization principle when
along with the known form of density function, a random
sample from the population is also given. Let us consider
f(x, 0) as the given functional form of probability density
estimation and we have to estimate the parameter 0 for a
given random sample Xj,Xs,..., X, from the population.
Fisher [3] suggested the method of maximum likelihood
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i.e. 0 should be chosen such that it maximizes the
likelihood function

L (x,0) = H f (x;, 0) 2.1)
i=1
orlogL(x,8)= Y logf(x,6) 2.2)
i=1
Now a probability distribution can be formed such that
x.,0
Pi :M , i=1,2,..n (2.3)

Y/ (5.6)

Where f (x;, 0) is the value of pdf at X = x;. For making
pi's as equal as possible, we choose parameter 6 such that
it maximizes Burg’s[2] measure of entropy for this
distribution. However, it may be noted that we can use
any measure of uncertainty. Burg’s entropy measure for

i=l1

is given by
HP)=\" log pi (2.4)
2
Substituting (2.3) in (2.4), we have
H(@P)=g 2.5
P) $log ’If(x[,ﬁ) (2.5)

Y f(x.0)
i=1
For maximizing (2.5) w.r.t. 0, we put the first derivative
of (2.4) w.r.t.0 equal to zero and thus we get
n 0f(x4,6)
n 1 of(xi8)) _ =1" 59 _
=1 (f(xi.e)' 26 ) ") O @6)
But Fisher’s method of maximum likelihood requires to
solve

< 1 of (x,,0) =0
) ey

i=l

Sincei f (x;,0) is not independent of 6, therefore (2.5)
i=1

and (2.6) will give different estimates of 6.

It is worth mentioning here that f(xy,0), f(x5,0),..., f(x,,0)
are not probabilities. Actually, these are the values of pdf
at (xq,Xy, ..., X,). Their sum is not necessarily unity or
independent of 0 as xi, Xa,..., X, represents only a random
sample and not all the values which the variate X can
take.

3. Principles of Entropy Optimization, Maximum
Likelihood and Minimum Chi-Square

In this section, we discuss the conventional estimation
methods vis-a-vis entropy optimization principle.
Principle of Maximum Likelihood:

Let (x4, x5, ..., X,) be a random sample from a population
with pdf f(x,0). We choose

or estimate parameter 0 in terms of the sample values
such that it maximizes likelihood function. But according
to Maximum Entropy Principle, we choose the value of 0
such that the uncertainty that remains after the sample
values are known is as large as possible. Or, we can say
that the entropy of the sample itself has to be a minimum.
Thus, the sample entropy is given by

Hs =3 f(x.0)log f(x,.6) 3.1

I=1
=Y plogp,
i=1

Hs=——[log f (x1,0) +log f (x2,0) + -+ + log f (x, 0)]

=—l[1og L(x,0)] (3.2)
n

where L(x, @) is the maximum likelihood function given
by (2.1).

Thus, we choose @ such that it minimizes the entropy of
the sample or maximizes the likelihood function. It
implies that maximum entropy principle leads to the
principle of maximum likelihood.

Now let us consider ¢(x,@) as the cumulative density

function of the second distribution in case of minimum
cross entropy principle. We shall choose & such that for

this value of @ the distribution function f(x, @) is as
close as possible to the distribution function determined
by the random sample x;, Xa,...., X,

Thus, Minimum Discrimination Information Statistic
based on Kullback Leibler [7] measure is

P P'(x,,60)
D(¢:f)= . A7)
Zl #'(x,,0)log D)

= i ¢'(xi,€)log¢'(xi,€)—zn:log f(x,,0)de(x,,0)
i=1 i=1

(3.3)
Equation (3.3.) attains minimum when its second part is
maximum. It means, we choose 0 which can maximize

> log £ (3, 0)dd(x,,6)

i=1

1
= ; [lng(xlv 0) + lng(XZ, 9) + ot logf(xnv 9)]

=l[10g L(x,0)] (3.4)
n

Hence, we choose 6 such as to maximize L(x, 0). Thus,
both Maximum Entropy and Minimum Cross Entropy
Principles lead to Maximum Likelihood Principle.
Principle of Minimum Chi-square:

Let us consider that there are n classes and

Np, Np,,....... »Np, be the expected frequencies on the

basis of parameter 0 in these classes, where N is total
frequency. Further, we consider that
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Ngq, Nq,,....... ,Ng,

these n classes. Then we choose 0 so as to minimize
divergence measure D (P:Q) or D (Q:P).

are the observed frequencies in

Let qi=pi+¢&, , where &, is very small
Then Y g —(. since L < B
i pi = g;=1
2 2 2
We have, D (P: Q) = Z P log (3.5)
i=1 i
~ %2_ : — Z (ql t’l)z (36)
Next, similarly we have
n N2
D(Q:P)Elzu (3.7
23 q;

It may be pointed here that (3.6) corresponds to
modified chi-square while (3.7) is chi-square statistic.
Thus, from (3.6) and (3 7) we can infer that 0 is chosen

E) o Z(0 E)

to minimize either Z O, —
o E

where O; and E; are observed and expected frequen01es in

the ith class and E;’s are function of 0.

Fisher’s Measure of Information (FMI)

Let f(x, 0) = f and f (x, 6+A0) = g, be the two density

functions, then divergence measure of f from g is given

by
D(f:)= flouas
f(x,0+A0)— f(x,0)

f(x,6)
Since A@ — 0 ,we have

D(f:g) =—j_f(x,9)1og(1+
X

=—[ £ (x.6)log(1+ )x

of (x,0) A6
0 f(x.0)

B af(x,0) AB f(x,0) A6 2
__ff(x'g)[ a6 f(x,H)_( a6 f(x,H))

+ w]dx :(3.8)

Since '[ f (x, 0) dx = 1, therefore

& 4 _oand 2'f (3.9)
396 dr=0 J aezdx 0
(3.8) and . 9) together gives
Do = aor[— L LED yar . (310
L fx 0) 00
f 1 ( af(xﬁ) y in (3.10) is called Fisher's
2 fx.0)" 08

information measure. It can be noted Fisher’s Measure of
Information measures the power of discrimination or
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divergence between two density functions f(x,#) and
f(x,0+ A0) .Thus, greater the value of FMI, greater is

the power of discrimination or it can be said that it gives
us more information about 0.

Fisher’s Measure of Information is different in many
aspects from Shannon’s measure of information and
Kullback-Leibler’s measure of divergence. Shannon’s
measure of information gives us information about the
probability density functions while FMI gives
information about the estimators of population
parameters. When interval is finite FMI measures the
directed divergence of f(x,0)from f(x,0+A8)

,while Shannon’s measure gives the directed divergence
of f (x, 0) from uniform density function.

Fisher’s Measure of Information gives directed
divergence of f (x, 0) from density function depending on
both f and g, while Shannon's measure gives the directed
divergence of f(x, 0) from a density function which is
independent of both f and q.

The Kullback-Leibler measure of directed divergence can
discriminate between any two density functions f (x, 0)
and g(x, 0) while FMI discriminate between f (x, 0) and
f(x,0+ A8)only. Thus, these measures have different

purposes, while deciding the relative merits of
information measures difficulty arises when the problems
of discriminate are viewed in isolation. In generalized
model, these measures are considered in relation with the
probability distribution and their moment.

4. Equivalence of classical and information

theoretic methods of parameter estimation

In this section, we have studied the relations between
traditional and information theoretic methods of
parameter estimation and observe that in most of cases
these are equivalent.

Entropy optimization Principle
principle of insufficient reasoning
If the constraints are absent in Jaynes', Maximum Entropy
Principle (MEP), and then maximization of uncertainty
gives the uniform distribution. Thus, the Laplace
principle is a special case of MEP. However, Hadgiswas
[5] has shown that the MEP and the MDI principles can
be deduced from the principle of insufficient reasoning
and thus, MEP and MDI can be regarded as the special
case of Laplace’s principle, while Laplace’s principle can
be regarded as a particular case of MDI principle when
there are no constraints and the prior distribution is
uniform.

Minimum discrimination Information and Maximum
Likelihood principle

In section 4.3, a correspondence between the MDI and
Fisher’s maximum likelihood principle has been

and Laplace’s
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established. Suppose we are given g(x) then we find f(x)
which minimizes

D(f:9)= [ (108 P
X g(x)

= '[ f(x) log f(x) dx - '[ f(x) log g(x) dx 4.1)
X X
and satisfies the given constraints or we may be given
f(x) and have to find g(x) so that we have to maximize

J. (log g(x)) f(x) dx = J. log g(x) dF(x), “4.2)

X b's

where F(x) is the cumulative distribution function of X.
In section 3 we have shown that maximization of (4.2)
correspond to maximization of the likelihood function.
Thus, Maximum Likelihood Principle can be regarded as
a special case of MDI principle.

Entropy Optimization principle and Guiasu’s
principle of Minimum Interdependence (PMI)

If the probability distributions of the individual random
variables are included in the set of constraints, as the
marginal probability distributions of the joint probability
distribution, the PMI is equivalent to the MEP. PMI is
also a particular case of Kullback’s MDI principle if a
priori joint probability density function is the independent
product density of n individual variables.

5. Estimation of parameter when interval

proportions are given

In this section, we discuss the problem of parameter
estimation in case proportions in different intervals are
given.

Let us consider a random variate X over the interval [a,b]
and let the random sample be arranged in order as
A=X0<X]<Xp<..<X;<Xy41<..<X; <Xpp =b (5.1)

So that the interval [a, b] is divided into (n +1)
subintervals and Qg, Q; ... ,Q, are the given proportions of
the population in these (n + 1) subintervals.

Let us define a probability function over subinterval (x;,
Xis1) a8

Xigl

Pi= I f(x, 0) dx,
Xi
where 0 is the population parameter.
Thus, (P, Py, ...., P,) gives us a probability distribution
depending on 6. Now, we have to choose parameter 0
such that Py, Py,..., P, are as close as possible to given Q,
Qi,..., Qn. This can be achieved by minimizing the
measure of cross entropy or directed divergence. We can
make use of any measure of cross entropy that gives rise
to a convex function of 0. But here, we minimize the
Kullback Leibler measure of cross entropy,

i=0,1,2,.,n (5.2)

D (Q: P)= iQilog%zzglogQi_zQilOgPi (5.3)
Py i=0 i=0

i

Minimization of (5.3) is same as maximization of

30 logh " So, we have to maximize

i=0

2Qlogh = | Q log]“ f (x;, 0) dx (5.4)
i=0 : !

This principle have wide applications in estimating
parameters when interval propertions are given to us, e.g.
proportions of students in different intervals of marks
obtained, proportion of failed equipments in different
intervals of time etc.

Let us consider the case when f(x;,0), functional form of
distribution is exponentially distributed with unknown
parameter 0. Then, (4.5.4) reduces to maximize

o= Zn: 0, log Jt O dx = Zn:Q,. log(e ™ +¢7%) (5.5
=0 % i=0

The above principle is illustrated in the following
example having randomly generated population data. We
have simulated the results for different sizes of the
random samples.

Example:Let us consider a randomly generated
population of size 50 (from exponential distributed with
mean = 20) with interval proportions as

Intervals: 0-10 10-20 20-30 30-40 40-50 >75

Frequency: 19 13 4 4 7 3

Q; = Proportion: 0.38 026 0.08 008 0.14
0.06

Here

X0 =0, x;=10, x, =20, x3= 30, x4 =40, X5= 60, Xg = 0,
we choose 6 which maximizes (4.5.5) i.e.

¢(6) = in log(e_xme + e—x,H)

=038 log (1—e™®?) + 026 log (¢ —¢%) + 0.08

(e—zoe _6—305) + 008 (e—xoe _6—409) + 0.14(6-409 _6—509) +
0.06 e
=-1520+0.94log (1-¢'%) (5.6)

To maximize (5.6), differentiate it w.r.t. 0 and put the
resultant form equal to zero, we get

. 0.94x10e™""
¢ (9) = —152+W =O
é=ilog%
10 7152

mean = lA =20.77
o

The estimated value of the parameter is quite close to the
population parameter value i.e. we have small bias.
Further, we can study the asymptotic behaviour of the
estimator.
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Table 1: Exponential Distribution (Mean=20)

Sample Estimates Bias
size MLE obtained by MEP
30 21 20.23 -0.23
200 21.55 | 21414 -1.414
1000 21.8 20.18 -0.18
10000 21492 | 19.84 0.16
Table 2: Geometric Distribution with p=0.2
Sample | MLE | Estimates Bias
size obtained by MEP
30 0.1668 | 0.1955 0.0045
200 0.1765 | 0.1933 0.0067
1000 0.1677 | 0.2177 -0.0177
10000 0.1690 | 0.2207 -0.0207

Fig.1 and Fig.2 shows the graph between the sample size
and the estimates obtained by MLE, MEP and bias for
geometric and exponential distribution respectively.
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