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Abstract: The oil well and rate allocation problem which refers to
allocating production rate and lift gas rate of a well to achieve
certain operational goals are described in this paper. These goals
vary with the field and time. In some petroleum fields, especially
mature fields, oil production can be constrained by fluid handling
capacities of facilities. For such fields, rate allocation can be an
effective way to increase the oil rate or reduce the production cost.
The objective of this paper is to maximize the total production of
oil, so that by using some properties of rate allocation problem, we
reformulate the problem in the form of Linear Programming (LP)
model and Mixed Integer Linear Programming (MILP) model. This
problem was solved by using branch and bound method.
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1. Introduction

The mechanism of Gas Lift is elaborated. An appropriate
amount of gas lift increases the oil rate, while excessive
gas lift injection will reduce the oil rate. To determine the
optimal gas lift rate, the usual practice is to allocate the
gas lift to a well according to a gas lift performance curve
(Nishikiori, Redner, Doty and Schmidt [9]). A gas lift
performance curve is a plot of oil rate versus gas lift rate
for oil well. When the gas supply is unlimited, the optimal
gas lift rate is the one corresponding to the maximum oil
rate on the Performance Curve. When the gas supply is
limited, the gas lift is usually allocated using some
optimization algorithm (Ray and Sarker [10]). The earliest
gas lift allocation method is simple heuristic method based
on the concept of Equal Slope, which states that at the
optimal solution, the slope of the gas lift performance
curve should be equal for all wells (Camponogara
and Codes [4]). In addition to the equal slope
method,Nishikiori, Redner, Doty and Schmidt et al. [9],
also applied a formal optimization algorithm, a Quasi -
Newton method, to the gas lift allocation problem. Both
the equal slope method and the Quasi - Newton method
relies on derivative information to verify optimality.
Therefore, tend to get trapped in local optima. This
limitation can be serious when some gas lift performance
curves are not concave. Buitrago [3], addressed this
problem by proposing a stochastic algorithm that uses a
heuristic method to calculate the descent direction.
However, as suggested by their results, their method is not
good for handling constraints. Gas lift optimization based

on performance curves is simple and easy to implement.
However, this approach ignores flow interactions among
wells in the optimization process. Dutta - Roy and
Kattapuram [5], analyzed a gas lift optimization problem
with two wells sharing a common flow line and pointed
out that when flow interactions are significant, nonlinear
optimization tools are needed to obtain satisfactory
results. They applied the Sequential Quadratic
Programming (SQP) method to a linearly constrained gas
lift optimization problem with 13 wells results showed
that the SQP method does perform better than methods
based on performance curves. General Rate Allocation
(GRA), this problem refers to allocating production rates
and gas lift rate of single well to achieve certain
operational goals. Linear programming seems to be the
most popular for this kind of problems. First method
(Attra, Wise and Black [2]), applied linear programming
to maximize daily income from multi reservoir, case
subject to well producing capacities, reservoir injection
requirements, compressor capacity limits, gas lift
requirements and sale contracts. Second method (Lo and
Holden [7]), proposed a linear programming model to
maximize daily oil rate by allocating well rates subject to
multiple flow rate constraints. Third method (Fang and Lo
[6]), applied LP to allocate both gas lift and production
rates. The last method proximate gas lift performance
curves by a piecewise linear curve and then formulated the
rate allocation problem as an LP problem. The LP method
is very efficient for the rate allocation problem, however,
suffers from the fact that the objective and constraint
functions in an LP problem have to be linear. Due to this
limitation, the gas lift performance curves in the third
method have to be concave.

2. The Problem

Rate allocation refers to the problem of optimally
adjusting producing rates and gas lift rates of production
wells to achieve certain operational goals. These goals
vary with the field and time. In some petroleum fields,
especially mature fields, oil production can be
constrained by fluid handling capacities of facilities. For
such fields, rate allocation can be an effective way to
increase the oil rate or reduce the production cost. For
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example, if the oil production in a field is constrained by
the gas processing capacity of the separation units,
closing or reducing production rates of wells with the
highest Gas Oil Ratio (GOR) will increase the total oil
rate, in addition, reducing the gas lift rate of certain wells
may increase the overall oil production by utilizing the
gas processing capacity more efficiently.

In this Paper, we address the following rate
allocation problem. The objective function is the total oil
rate. An oil, gas, water, or liquid flow rate constraints can
be put on any production well or network node. In
abstract form, the optimization problem can be expressed
as:

Lo e
Maximize lél(qo’i) 0
@)
(Phaseg includes both the formulation gas and gas lift,
superscript n and w denotes nods and wells,
respectively).

Where, ¢", iis the oil rate of well i,
q",jis the flow rate of phase pin nodej,
Q", jis the flow rate limit of phase p for nodej,

Q2" is the set of all nodes.

For gathering system with a tree like structure, the
flow rate of network nodej is the sum of the flow rates of
wells connected to node j.

Physically, the control variables for the rate
allocation problem are the well chokes and gas lift rates
of wells and the flow rate of each well, qw,,”j ,1s a
nonlinear function of the control variables.

Fang and Lo et al. [6], made the following
assumptions:

1) The well performance information can be evaluated
individually for each well

by ignoring flow interactions among wells.

2) The gas oil ratio and water cut for a well remain
constant for varying oil rate.
3) The gas lift performance curves are concave.

With the above assumptions, they reformulated
the rate allocation problem to a linear programming
problem and solved it by the simplex algorithm. The
method was found to be very efficient.

The objective and constraint functions of the rate
allocation problem (1) and (2) are linear combinations of
the oil, water and gas lift rates of individual wells.
Further, when the well performance approximated by
piecewise linear performance curves, the water,
formation gas and gas lift rates of a well can be regarded
as functions of the oil rate of that well. Therefore, if we
regard the oil rate as the control variables, denoted as X,
equations (1) and (2) become an optimization problem

Subject to ql’)‘j < QZ/. ,JEQ, Pe(0,8.W i)
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whose objective and constraint functions are the sums of
functions of one variable, which can be expressed as:

Maximize Zf X,)

J=l 3)
Subject to Zh[j (Xj)<bi,i=l..m @)

2 0, j=l1,..,
J Iy 5)

Where,f; denotes the ObJeCtIVC functions,

h;; denotes the j" function involved in the i
constraint,

b; denotes the limit of the constraint,

m denotes the number of constraints.

Optimization problems of the form of equations
(3), (4) and (5) are piecewise linear problems, which can
be solved by linear optimization techniques. This is
demonstrated in the following;

First, a point [x, f (X)] on a piecewise linear curve
defined by a set of discrete points [x;, f (x)], i = o,..., 7.
Can be expressed as follows:

.th

X = 2_:0/1] X, ©
f(X)=;/1jf(xj)

)
$A,=1.2,20
= 8)

No more than two Aican be positive and they must be
adjacent. (©)

Suppose for well j, each of its well performance
curves are defined by r;+ I discrete points with xj,= o
and x;;= onmax,

Whereg,,"" is the maximum oil rate for well .
Then for all functions fj(x;)andg; (x;), we can write:
r

J
f(X):gﬂ fjk’ fjk:fj(Xjk) (10)

an
J

Z
= (12)

"j
YA, =1,4, 20, Vv oj.k
K=o / J (13)
For a givenj, no more than two j  can be positive and
jk
they must be adjacent (14) Substituting equations
[(10) - (14)] into equations [(3), (4) and (5)], we obtain

the following problem (A).

Maximize Z = Z Zf i
Jj=1k=0 ik j 15)

Subject to = Z Z g jk <b, ,i=l...m

ijk
(16)
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r.
J

3 ﬂ.k =1, j=L..,n
K=o / v a7

A, 20, Vj,k

J (18)

For a given j, no mere than two /1 i can be positive and

they must be adjacent
(19)

Without constraint equation (19), we would have
a general linear programming problem. It can be shown
that if all fj(x;) are concave functions and g;;are convex
functions, then, the optimal solution of an LP problem
defined by equations [(15) to (18)] automatically satisfies
constraint equation (19). However, in general cases,
constraint equation (19) has to be enforced explicitly.

3. Mixed Integer Linear Programming (MILP)
Models for Rate Allocation Problem

This model enforces constraint equation (18),
explicitly and is suitable for rate allocation problems with
performance curves of arbitrary shapes. The disadvantage
of this method is that even for a rate allocation problem
with moderate size this model can contain a large number
of binary variables and constraints.

To enforce the constraint that for certain j at most
two consecutive coefficients Ay, are non-zero, we
introduce a binary variable y;.k =o,..., r; -1, which can be
equal to 1 only if x 4 < x; < x; wspjand O otherwise.
Problem (A) is then formulated as a Mixed Integer linear
Programming Problem (MILP) to obtain the following
problem (B).

ﬂwif./i

Maximize Z = Y ¥=¢ ik I
j=1

(20)

r.
. o J .
Subject to = ];kgog”fk ﬂ'jk <b, ,i=l..m

(21)

0 (22)

Jjo i0 (23)
< _ .

=Y jw-n T i T (24)

(25)

(26)

Ay 20,
27

Vi € O, k=lor =l V]
(28)

Several similar reformulations exist and their
computational performance can be different.

In principle, a MILP problem can be solved by
enumeration. However, complete enumeration is
computationally infeasible as soon as the number of
integer variables in a MILP problem exceeds 20 or 30. So
we need some strategies to cut the number of necessary
enumerations. An effective method for this purpose is the
Branch and Bound method (Mavrotas and Diakoulaki
[8]).

Branch and Bound is a general search method for
optimization problems over a search space that can
represents as leaves of a tree. A fundamental idea behind
that is to divide and conquer. Consider a general
optimization problem.

Z =max|[CTX :X eS|

(29)
Where,
X is the control variable and S denotes its feasible set,
Let, S = S,U...S;be a decomposition of S into smaller sets,

Let, kaax{CTX ‘X e Sk}fOI'K= 1,..., k .Then < =

maxk ;"

Based on this idea, branch and bound recursively divides
an optimization problem into several sub problems and
there by forms an enumeration tree, with each node in the
tree representing a sub problem. The enumeration tree is
constructed implicitly and the bound information on sub
problems, are used to prune the tree.

Next, we present a branch and bound method for
solving problem (B). The algorithm maintains a lower
bound -Z and upper bound +Z,(-Z <Z < + Z)and a stack
of active search nodes representing sub problems to be
examined.

4. Algorithm of Branch and Bound Method
Stepl.Initialization: Let -Z = - and +Z = +o. Put
problem (B) into the stack of active search nodes.
Step2.Choosing a node: If the stack of active nodes is
empty, the entire tree has been enumerated and the
research ends. If the stack of active nodes contains
several nodes, pop out the node on top of the stack. This
node represents a MILP sub problem generated in Step I
or 6.

Step3.Optimizing: Solve the LP relaxation of the sub
problem selected in Step 2. Denote its optimal value asZ.
Step4.Bounding: If the node selected in Step 2 is the root
node, update +Z = Z. If the solution in step 3 is a feasible
solution to problem (B), update - Z= max (- 7,7) and
store the corresponding feasible solution.

StepS.Pruning: The following conditions allow us to
prune the tree and thus enumerate a large number of
solutions implicitly.
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a) Pruning by optimality: If +Z - (-Z)<ez ,Where g,is a
prescribed tolerance. Then the feasible solution
corresponds to - Z can be regarded as the option solution
of problem (B) and to search ends.

b) Pruning by feasibility: The solution from step 3 is a
feasible solution to problem (B). There is no need to
divide further the sub problem represented by current
node.

¢) Pruning by bound: Z < - Z. The upper bound off the
sub problem represented by current searching node is
below the lower bound. There is no need to divide further
the sub problem represented by current node.

d) Pruning by infeasibility: The problem examined has
no feasible solution. There is no need to divide further the
sub problem represented by current node. If condition (a)
is met, stop. If condition (b), (c) or (d) is met, go to step 2
to backtrack, otherwise, go to step 6 to branch.
Step6.Branching: To reach this step, the solution from
step 3 must not be a feasible solution to problem (B),
some binary variable yj has fractions value .Suppose

variableyj , 1 <J <ny, K€ [o ... r;_1], has a fractional
value. The MILP sub problem from step 2 (the parent
sub problem) can be divided into two sub problems. The
first sub problem is comprised of the parent sub problem
plus a constrain of yj = 0. The second sub problem is
comprised of the parent sub problem plus a constraint of
yi=1. Add the two sub problems on top of the stack of
active nodes in a prescribed order (such as the first sub
problem goes first and the second sub problem goes
second)

Step7. Continue the search by going to step 2.

The purpose of step 3 is to compute an upper
bound for the MILP sub problem from step 2. The bund
information is used in step 5 to prune the enumeration
tree. The upper bound of a MILP sub problem is often
obtained by solving relaxed problem , a problem that has
an optimal value no worse than that of the MILP sub
problem. One such relaxation for a MILP problem is its
linear programming relaxation that allows the integer
variables in a MILP problem to take real values. For
example, an LP relaxation of problem (4B) is an LP
problem that replaces constraint equation (28) with the
following linear constraints.

< < = — 1
O_yl.k <1,k 1,...,rj 1, YV j o)

5. Numerical Example

The numerical example is taken from Ministry of
oil and minerals in Yemen (Annual Bulletin [1] and
Statistics Department Report [11]). The problem is to
optimize oil production from a set of 56 wells with
22,500 (MSCF/ d) of available gas. Wells 47-56 cannot
flow without gas lift. In this study, the method hereby
described using NETSO programme which was written in
Fortran 77 language and developed on a silicon graphics
origin 200 for workstation.This problem is solved by
using both of MILP method and branch and bound
method for reducing the mixed integer problem to a
sequence of linear programming problems. The results for
MILP method are shown in table (1).

Table 1: Gas injection and oil production rates for a set of 56 wells obtained from the MILP method

Well Oil Rate Gas Rate Well Oil Rate Gas Rate Well Oil Rate Gas Rate

No STB/d MSCF/d No STB/d MSCF/d No STB/d MSCF/d

1 386 672 20 391 975 39 207 301
2 626 450 21 455 772 40 27 98

3 605 521 22 214 370 41 372 0

4 280 0 23 944 0 42 200 0

5 281 0 24 1,680 1,030 43 337 797
6 333 157 25 487 0 44 397 0

7 836 235 26 105 120 45 83 0

8 276 268 27 353 0 46 50 14
9 1,568 1,295 28 1,044 0 47 441 3,042
10 233 0 29 184 0 48 483 2,466
11 957 1,048 30 308 0 49 232 1,418
12 510 800 31 354 0 50 0 0
13 108 0 32 654 131 51 0 0
14 302 186 33 211 208 52 0 0
15 648 598 34 209 0 53 267 1,484
16 361 460 35 216 195 54 0 0
17 892 0 36 204 108 55 0 0
18 1,213 282 37 64 0 56 452 1,770
19 310 0 38 282 157 - - -

Table (2) compares the performance of the MILP method with the equal slope method and the Ex - In
method results, for the equal slope method and the Ex - In method are taken from Buitrago et al.[3]. The MILP method
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outperforms both the equal slope method and the Ex In method for this example. Specifically, using the same amount of
gas lift, the MILP method allocates 64% more oil than the equal slope method. To allocate 21,265 STB/d oil, the MILP
method requires 37.0% less gas lift than the equal slope method. To allocate 21,790 STB/d oil, the MILP method

requires 16.6% less gas lift then the EX — In method.

Table 2: Gas lift allocation results obtained from different methods

Different Equal slope Ex-In MILP MILP MILP
Methods 1 2 3

Gas Lift rate (MSCF/d) 22,508 20,454 | 22,500 | 14,175 17,040
Oil Rate (STB/d) 21,265 21,790 | 22,632 | 21,265 | 21,790

1) Allocate all available gas lift of 22,500 MSCF/d.

2) Minimize gas lift rate while keeping the oil rate at 21,265 STB/d.
3) Minimize gas lift rate while keeping the oil rate at 21,790 STB/d.

6. Conclusions

This Paper describes the oil well and rate
allocation problem which refers to allocating production
rate and lift gas rate of a well to achieve certain
operational goals. These goals vary with the field and
time. For such field rate allocation can be an effective
way to increase the oil rate or reduce the production
cost. The objective of this Paper is to maximize the total
production of oil, so that by using some properties of
rate allocation problem, we reformulate the problem in
the form of linear programming model and mixed
integer linear programming model. This problem was
solved by using branch and bound method.The different
results obtained from different methods are compared.
Theperformance of the MILP method is compared with
the equal slope method and the Ex- In method. The
results showed that the MILP method out performs both
the equal slope method and Ex-In method. Specifically,
using the same amount of gas lift, the MILP method
allocates 64% more oil than the equal slope method. To
allocate 21,265 STB/d oil, the MILP method requires
37% less gas lift than the equal slope method. To
allocate 21,790 STB/d oil, the MILP method requires
16.6% less gas lift than the Ex-In method.
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