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Abstract: The oil well and rate allocation problem which refers to 

allocating production rate and lift gas rate of a well to achieve 

certain operational goals are described in this paper. These goals 

vary with the field and time. In some petroleum fields, especially 

mature fields, oil production can be constrained by fluid handling 

capacities of facilities. For such fields, rate allocation can be an 

effective way to increase the oil rate or reduce the production cost. 

The objective of this paper is to maximize the total production of 

oil, so that by using some properties of rate allocation problem, we 

reformulate the problem in the form of Linear Programming (LP) 

model and Mixed Integer Linear Programming (MILP) model. This 

problem was solved by using branch and bound method. 

Key words:  Oil Well, Rate Allocation, Gas Lift, LP Model, MILP 

Model, Bound and Branch Method etc.  
 

1. Introduction  
The mechanism of Gas Lift is elaborated. An appropriate 

amount of gas lift increases the oil rate, while excessive 

gas lift injection will reduce the oil rate. To determine the 

optimal gas lift rate, the usual practice is to allocate the 

gas lift to a well according to a gas lift performance curve 

(Nishikiori, Redner, Doty and Schmidt [9]). A gas lift 

performance curve is a plot of oil rate versus gas lift rate 

for oil well. When the gas supply is unlimited, the optimal 

gas lift rate is the one corresponding to the maximum oil 

rate on the Performance Curve. When the gas supply is 

limited, the gas lift is usually allocated using some 

optimization algorithm (Ray and Sarker [10]). The earliest 

gas lift allocation method is simple heuristic method based  

on  the  concept of   Equal  Slope, which  states that at the 

optimal solution, the  slope  of  the gas lift performance  

curve  should  be  equal for  all   wells  (Camponogara   

and  Codes  [4]). In addition to the equal slope 

method,Nishikiori, Redner, Doty and Schmidt et al. [9], 

also applied a formal optimization algorithm, a Quasi - 

Newton method, to the gas lift allocation problem. Both 

the equal slope method and the Quasi - Newton method 

relies on derivative information to verify optimality. 

Therefore, tend to get trapped in local optima. This 

limitation can be serious when some gas lift performance 

curves   are not   concave.  Buitrago [3], addressed this 

problem   by proposing a stochastic algorithm that uses a 

heuristic method to calculate the descent direction. 

However, as suggested by their results, their method is not 

good for handling constraints. Gas lift optimization based 

on performance curves is simple and easy to implement. 

However, this approach ignores flow interactions among 

wells in the optimization process. Dutta - Roy and 

Kattapuram [5], analyzed a gas lift optimization problem 

with two wells sharing a common flow line and pointed 

out that when flow interactions are significant, nonlinear 

optimization tools are needed to obtain satisfactory 

results. They applied the Sequential Quadratic 

Programming (SQP) method to a linearly constrained gas 

lift optimization problem with 13 wells results showed 

that the SQP method does perform better than methods 

based on performance curves. General Rate Allocation 

(GRA), this problem refers to allocating production rates 

and gas lift rate of single well to achieve certain 

operational goals. Linear programming seems to be the 

most popular for this kind of problems. First method 

(Attra, Wise and Black [2]), applied linear programming 

to maximize daily income from multi reservoir,  case 

subject to well producing capacities, reservoir injection 

requirements, compressor capacity limits, gas lift 

requirements  and sale contracts. Second method (Lo and 

Holden [7]), proposed a linear programming model to 

maximize daily oil rate by allocating well rates subject to 

multiple flow rate constraints. Third method (Fang and Lo 

[6]), applied LP to allocate both gas lift and production 

rates. The last method proximate gas lift performance 

curves by a piecewise linear curve and then formulated the 

rate allocation problem as an LP problem. The LP method 

is very efficient for the rate allocation problem, however, 

suffers from the fact that the objective and constraint 

functions in an LP problem have to be linear. Due to this 

limitation, the gas lift performance curves in the third 

method have to be concave. 
 

2.   The Problem   
Rate allocation refers to the problem of optimally 

adjusting producing rates and gas lift rates of production 

wells to achieve certain operational goals. These goals 

vary with the field and time. In some petroleum fields, 

especially mature fields, oil production can be 

constrained by fluid handling capacities of facilities. For 

such fields, rate allocation can be an effective way to 

increase the oil rate or reduce the production cost. For 
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example, if the oil production in a field is constrained by 

the gas processing capacity of the separation units, 

closing or reducing production rates of wells with the 

highest Gas Oil Ratio (GOR) will increase the total oil 

rate, in addition, reducing the gas lift rate of certain wells 

may increase the overall oil production by utilizing the 

gas processing capacity more efficiently. 

 In this Paper, we address the following rate 

allocation problem. The objective function is the total oil 

rate. An oil, gas, water, or liquid flow rate constraints can 

be put on any production well or network node. In 

abstract form, the optimization problem can be expressed 

as: 

0,
1
( )

nw w
i

i
Maximize q

=
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     (1) 
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, , 0, , ,nn n

p j p j
Subject to q Q j P g W iε ε≤ Ω
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(Phaseg includes both the formulation gas and gas lift, 

superscript n and w denotes nods and wells, 

respectively).    

Where, q
w

o,iis the oil rate of well i,  

q
n

p,jis the flow rate of phase pin nodej, 

Q
n

p,,jis the  flow rate limit of phase  p for nodej,  
nΩ is the set of all nodes.  

          For gathering system with a tree like structure, the 

flow rate of network nodej is the sum of the flow rates of 

wells connected to node j. 

 Physically, the control variables for the rate 

allocation problem are the well chokes and gas lift rates 

of wells and the flow rate of each well, q
w

p,,j , is a 

nonlinear function of the control variables.  

          Fang and Lo et al. [6], made the following 

assumptions:  

1) The well performance information can be evaluated 

individually for each well 

by ignoring flow interactions among wells.  

2) The gas oil ratio and water cut for a well remain 

constant for varying oil rate.  

3) The gas lift performance curves are concave. 

 With the above assumptions, they reformulated 

the rate allocation problem to a linear programming 

problem and solved it by the simplex algorithm. The 

method was found to be very efficient.  

 The objective and constraint functions of the rate 

allocation problem (1) and (2) are linear combinations of 

the oil, water and gas lift rates of individual wells. 

Further, when the well performance approximated by 

piecewise linear performance curves, the water, 

formation gas and gas lift rates of a well can be regarded 

as functions of the oil rate of that well. Therefore, if we 

regard the oil rate as the control variables, denoted as X, 

equations (1) and (2) become an optimization problem 

whose objective and constraint functions are the sums of 

functions of one variable, which can be expressed as:  
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Where,fj denotes the objective functions, 

hij denotes the j
th

 function involved in the i
th

 

constraint, 

bi denotes the limit of the constraint, 

m denotes the number of constraints.  

 Optimization problems of the form of equations 

(3), (4) and (5) are piecewise linear problems, which can 

be solved by linear optimization techniques. This is 

demonstrated in the following;  

 First, a point [x, f (x)] on a piecewise linear curve 

defined by a set of discrete points [xi , f (xi)], i = o,…, r. 

Can be expressed as follows:  

0

r

j j
j

X xλ
=

= ∑
   (6) 

0
( ) ( )

r

j j
j

f X f xλ
=

= ∑
 (7) 

 0
1, 0

r

j j
j

λ λ
=

= ≥∑
  (8) 

No more than two λjcan be positive and they must be 

adjacent. (9) 

         Suppose for well j, each of its well performance 

curves are defined by  rj+ 1 discrete points with  xjo= o  

and  xjrj= qoj
max

, 

Whereqoj
max

 is the maximum oil rate for well j. 

        Then for all functions fj(xj)andgij (xj), we can write:  
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For a givenj, no more than two 
jk

λ  can be positive and 

they must be adjacent (14)     Substituting equations 

[(10) - (14)] into equations [(3), (4) and (5)], we obtain 

the following problem (A). 
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For a given j, no mere than two 
jk

λ can be positive and 

they must be adjacent    
   (19) 

 Without constraint equation (19), we would have 

a general linear programming problem. It can be shown 

that if all  fj(xj) are concave functions and  gijkare  convex 

functions, then, the optimal solution of an LP problem 

defined by equations [(15) to (18)] automatically satisfies 

constraint equation (19). However, in general cases, 

constraint equation (19) has to be enforced explicitly. 
 

3. Mixed Integer Linear Programming (MILP) 

Models for Rate Allocation Problem 
 This model enforces constraint equation (18), 

explicitly and is suitable for rate allocation problems with 

performance curves of arbitrary shapes. The disadvantage 

of this method is that even for a rate allocation problem 

with moderate size this model can contain a large number 

of binary variables and constraints.  

 To enforce the constraint that for certain j at most 

two consecutive coefficients λjk, are non-zero, we 

introduce a binary variable yjk,k =o,…, rj -1, which can be 

equal to 1 only if x jk ≤ xj ≤ xj (k+1)and 0 otherwise. 

Problem (A) is then formulated as a Mixed Integer linear 

Programming Problem (MILP) to obtain the following 

problem (B). 
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 Several similar reformulations exist and their 

computational performance can be different. 

 In principle, a MILP problem can be solved by 

enumeration. However, complete enumeration is 

computationally infeasible as soon as the number of 

integer variables in a MILP problem exceeds 20 or 30. So 

we need some strategies to cut the number of necessary 

enumerations. An effective method for this purpose is the 

Branch and Bound method (Mavrotas and Diakoulaki 

[8]). 

 Branch and Bound is a general search method for 

optimization problems over a search space that can 

represents as leaves of a tree. A fundamental idea behind 

that is to divide and conquer. Consider a general 

optimization problem.  

{ }max :TZ C X X S= ∈
 (29) 

Where, 

X is the control variable and S denotes its feasible set,  

Let, S = S1U...Skbe a decomposition of S into smaller sets,  

Let, m ax{ : }Tk
k

Z C X X S∈ for K = 1,..., k .Then  z = 

maxk
k

z . 

Based on this idea, branch and bound recursively divides 

an optimization problem into several sub problems and 

there by forms an enumeration tree, with each node in the 

tree representing a sub problem. The enumeration tree is 

constructed implicitly and the bound information on sub 

problems, are used to prune the tree.  

 Next, we present a branch and bound method for 

solving problem (B). The algorithm maintains a lower 

bound -Z and upper bound +Z,(-Z ≤ Z ≤ + Z)and a stack 

of active search nodes representing sub problems to be 

examined. 
 

4. Algorithm of Branch and Bound Method 
Step1.Initialization: Let -Z = -∞ and +Z = +∞. Put 

problem (B) into the stack of active search nodes.  

Step2.Choosing a node: If the stack of active nodes is 

empty, the entire tree has been enumerated and the 

research ends. If the stack of active nodes contains 

several nodes, pop out the node on top of the stack. This 

node represents a MILP sub problem generated in Step I 

or 6.  

Step3.Optimizing: Solve the LP relaxation of the sub 

problem selected in Step 2. Denote its optimal value asẐ. 

Step4.Bounding: If the node selected in Step 2 is the root 

node, update +Z = Ẑ. If the solution in step 3 is a feasible 

solution to problem (B), update - Z= max (- Z,Ẑ) and 

store the corresponding feasible solution.  

Step5.Pruning: The following conditions allow us to 

prune the tree and thus enumerate a large number of 

solutions implicitly.  
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a) Pruning by optimality: If +Z - (-Z)≤εz ,Where  εzis a 

prescribed tolerance.  Then the feasible solution 

corresponds to - Z can be regarded as the option solution 

of problem (B) and to search ends.  

b) Pruning by feasibility: The solution from step 3 is a 

feasible solution to problem (B). There is no need to 

divide further the sub problem represented by current 

node.  

c) Pruning by bound: Ẑ ≤ - Z. The upper bound off the 

sub problem represented by current searching node is 

below the lower bound. There is no need to divide further 

the sub problem represented by current node. 

d)  Pruning by infeasibility: The problem examined has 

no feasible solution. There is no need to divide further the 

sub problem represented by current node. If condition (a) 

is met, stop. If condition (b), (c) or (d) is met, go to step 2 

to backtrack, otherwise, go to step 6 to branch.  

Step6.Branching: To reach this step, the solution from 

step 3 must not be a feasible solution to problem (B), 

some binary variable yjk has fractions value .Suppose 

variableyjk , 1 ≤ J ≤ nw, K ∈ [o … rj −1], has a fractional 

value.  The MILP sub problem from step 2 (the parent 

sub problem) can be divided into two sub problems. The 

first sub problem is comprised of the parent sub problem 

plus a constrain of yjk = 0. The second sub problem is 

comprised of the parent sub problem plus a constraint of 

yjk=1. Add the two sub problems on top of the stack of 

active nodes in a prescribed order (such as the first sub 

problem goes first and the second sub problem goes 

second) 

Step7. Continue the search by going to step 2. 

  The purpose of step 3 is to compute an upper 

bound for the MILP sub problem from step 2. The bund 

information is used in step 5 to prune the enumeration 

tree. The upper bound of a MILP sub problem is often 

obtained by solving relaxed problem , a problem that has 

an optimal value no worse than that of the MILP sub 

problem. One such relaxation for a MILP problem is its 

linear programming relaxation that allows the integer 

variables in a MILP problem to take real values. For 

example, an LP relaxation of problem (4B) is an LP 

problem that replaces constraint equation (28) with the 

following linear constraints.  

0 1 , 1,..., 1,
ik j

y k r j≤ ≤ = − ∀
 (30) 

5. Numerical Example 
 The numerical example is taken from Ministry of 

oil and minerals in Yemen (Annual Bulletin [1] and 

Statistics Department Report [11]). The problem is to 

optimize oil production from a set of 56 wells with 

22,500 (MSCF/ d) of available gas. Wells 47-56 cannot 

flow without gas lift. In this study, the method hereby 

described using NETSO programme which was written in 

Fortran 77 language and developed on a silicon graphics 

origin 200 for workstation.This problem is solved by 

using both of MILP method and branch and bound 

method for reducing the mixed integer problem to a 

sequence of linear programming problems. The results for 

MILP method are shown in table (1). 

 

Table 1: Gas injection and oil production rates for a set of 56 wells obtained from the MILP method 

Well 

No 

Oil Rate 

STB/d 

Gas Rate 

MSCF/d 

Well 

No 

Oil Rate 

STB/d 

Gas Rate 

MSCF/d 

Well 

No 

Oil Rate 

STB/d 

Gas Rate 

MSCF/d 

1 386 672 20 391 975 39 207 301 

2 626 450 21 455 772 40 27 98 

3 605 521 22 214 370 41 372 0 

4 280 0 23 944 0 42 200 0 

5 281 0 24 1,680 1,030 43 337 797 

6 333 157 25 487 0 44 397 0 

7 836 235 26 105 120 45 83 0 

8 276 268 27 353 0 46 50 14 

9 1,568 1,295 28 1,044 0 47 441 3,042 

10 233 0 29 184 0 48 483 2,466 

11 957 1,048 30 308 0 49 232 1,418 

12 510 800 31 354 0 50 0 0 

13 108 0 32 654 131 51 0 0 

14 302 186 33 211 208 52 0 0 

15 648 598 34 209 0 53 267 1,484 

16 361 460 35 216 195 54 0 0 

17 892 0 36 204 108 55 0 0 

18 1,213 282 37 64 0 56 452 1,770 

19 310 0 38 282 157 - - - 
 

       Table (2) compares the performance of the MILP method with the equal slope method and the Ex - In 

method results, for the equal slope method and the Ex - In method are taken from Buitrago et al.[3]. The MILP method 
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outperforms both the equal slope method and the Ex In method for this example. Specifically, using the same amount of 

gas lift, the MILP method allocates 64% more oil than the equal slope method. To allocate 21,265 STB/d oil, the MILP 

method requires 37.0% less gas lift than the equal slope method. To allocate 21,790 STB/d oil, the MILP method 

requires 16.6% less gas lift then the EX – In method.    
 

Table 2: Gas lift allocation results obtained from different methods 

Different 

Methods 

Equal slope Ex-In MILP  

1 

MILP  

2 

MILP  

3 

Gas Lift rate (MSCF/d) 22,508 20,454 22,500 14,175 17,040 

Oil Rate (STB/d) 21,265 21,790 22,632 21,265 21,790 
 

1) Allocate all available gas lift of 22,500 MSCF/d.  

2) Minimize gas lift rate while keeping the oil rate at 21,265 STB/d. 

3) Minimize gas lift rate while keeping the oil rate at 21,790 STB/d. 
 

6. Conclusions 
 This Paper describes the oil well and rate 

allocation problem which refers to allocating production 

rate and lift gas rate of a well to achieve certain 

operational goals. These goals vary with the field and 

time. For such field rate allocation can be an effective 

way to increase the oil rate or reduce the production 

cost. The objective of this Paper is to maximize the total 

production of oil, so that by using some properties of 

rate allocation problem, we reformulate the problem in 

the form of linear programming model and mixed 

integer linear programming model. This problem was 

solved by using branch and bound method.The different 

results obtained from different methods are compared. 

Theperformance of the MILP method is compared with 

the equal slope method and the Ex- In method. The 

results showed that the MILP method out performs both 

the equal slope method and Ex-In method. Specifically, 

using the same amount of gas lift, the MILP method 

allocates 64% more oil than the equal slope method. To 

allocate 21,265 STB/d oil, the MILP method requires 

37% less gas lift than the equal slope method. To 

allocate 21,790 STB/d oil, the MILP method requires 

16.6% less gas lift than the Ex-In method.      
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