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Abstract: This paper deals with the study of optimality of circular 
neighbor balanced designs for total effects when the one-sided or 
two sided neighbor effects are present in the models and the 
observation errors are correlated according to first order circular 
stationary autoregressive process. Some optimality results under 
some specified conditions are provided and the efficiencies of 
circular neighbor balanced designs relative to the optimal 
continuous block designs are also investigated. In order to discuss 
the efficiency of circular neighbor balanced designs among all 
possible block designs with the same parameters, the optimal 
continuous block designs are characterized and the efficiencies of 
circular neighbor balanced with block of small size k≤ 16 are 
illustrated. 
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Introduction 
Blocking of experimental units can efficiently 

eliminate heterogeneity in the experimental material and 
increase the sensitivity of data analysis. This technique 
has been popularly adopted in various scientific 
investigations and product quality improvement. It 
motivates many researchers to deeply study the optimality 
of block designs and their construction approaches. The 
detailed discussion can be found in most recent texts on 
the design of experiments, e.g., in Dey (1986), 
Pukelsheim (1993), Wu and Hamada (2000) and Box, 
Hunter and Hunter (2005). In many experiments, the 
response on one subject in a given period may be affected 
by the neighbor (or residual) effects of the treatments 
applied to that subject in the neighboring periods as well 
as by the direct effect of the current treatment. Under the 
linear models with the neighbor effects, many optimality 
results of block designs are established for treatment and 
neighbor effects separately. Hedayat and Afsarinejad 
(1978), Cheng and Wu (1980), Kunert (1984b) and 
Kushner (1997) for cross-over designs, Kunert (1984a) 
and AzaÄ³s, Bailey and Monod(1993), Druilhet (1999) 
and Filipialk and Markiewicz(2005) were dealt with 
circular neighbor- balanced designs. Bailey and Druilhet 
(2004) pointed out that the effect of most importance is 
the sum of the direct effect of the treatment and the 
neighbor effects of the same treatment that is the total 

effect. Furthermore, they also showed that a circular 
neighbor-balanced design is universally optimal [in 
Kiefer's (1975) sense] for total effects under linear 
models containing the neighbor effects at distance one 
among the class of all designs with no treatment preceded 
by it. Optimality of circular neighbor – balanced designs 
for total effects with Autoregressive correlated 
observations was introduced by Yun long Yu, MingYao 
Ai, and Shayuan He. In this paper we study the universal 
optimality of circular neighbor-balanced designs for total 
effects, but when the observation errors are correlated 
according to a first-order circular autoregressive process. 
In this paper, Section 2 deals with some definitions and 
preliminaries. Section 3 presents the main results that 
circular neighbor- balanced designs are universally 
optimal under some conditions for the total effects in 
linear models which incorporate one-sided or two-sided 
neighbor effects when the observation errors are 
correlated according to a first-order circular 
autoregressive process. In order to discuss the efficiency 
of circular neighbor-balanced designs among all possible 
block designs with the same parameters, the optimal 
continuous block designs are characterized in Section 4. 
Section 5 presents the efficiency of circular neighbor-
balanced designs with blocks of small size k ≤16 based 
on the previous structure of optimal equivalence classes 
of sequences. 
 

2. Model and Definition 
Let ln denote an n-dimensional vector of ones 

and the symbol  
⊗ denote the Kro- Necker product.  Consider a set of 
circular block designs Ω(t,b,k). For a design d ∈ Ω(t,b,k), the 
left-Neighbor and two-sided Neighbor linear effect 
additive model can be written in vector form as (M1)  

 

       (1) 
(M2)   

      (2) 
Where Y =(Y11,...,Y1k,...,Yb1,...,Ybk)’,Yij is the 



Jeevitha M., C. Santharam 

International Journal of Statistiika and Mathematika, ISSN: 2277- 2790 E-ISSN: 2249-8605, Volume 7 Issue 2                                                  Page 20 

observation response on plot j of block i, µ is the general 
mean, τ, λ and ρ are, respectively, the t-dimensional 
vectors of the direct effects, left-Neighbor effects and 
right-Neighbor effects of the t treatments, Td, Ld and Rd 

are the corresponding incidence matrices,  β is the b-
dimensional vector of the block effects, and ε is the 
vector of random errors. Suppose that the errors in each 
block are correlated according to a first-order circular 
auto regressive process, denoted by AR(1,C). Details 
given in Kunert and Martin (1987). The AR(1,C) process 
can be represented in the recursive form εi=νεi−1+ηiwith  
|ν|<1,where the ηi’s are uncorrelated noises with  
E(ηi)=0 and Var (ηi)=σ2, and E(ε0)=0.Then E(ε) = 0 Cov 
(ε) = σ2Ib ⊗ S and 

 

 
Where H denotes the k×k matrix with h1k= 1 and 

the (i,j)th element hij= 1 if i−j=1 and 0 otherwise. Note 
that when ν = 0, the structure of errors is reduced to the 
popular  i.i.d. case. Let φ and ψ denote the total effects of 
the t treatments in the models (M1) and (M2), 
respectively, that is φ=τ+λ and ψ=τ+λ+ρ.  Thus, we can 
obtain the following universal optimality results of 
CNBD’s for the total effects.  
 

Result 1 

For 3 ≤ k ≤ t, a CNBD (2) in Ω(t,b,k) is universally 
optimal for the total effects in the model (M1) among all 
the designs with no treatment Neighbor of itself when 0 ≤ 
ν < 1, and among all the designs with no treatment 
Neighbor fit self at distance 1 or 2 when −1 < ν < 0. 
 

Result 2 

For 4 ≤ k ≤ t, a CNBD (3)in Ω(t,b,k) is universally 
optimal for the total effects in the model  (M2) among all 
the designs with no treatment Neighbor of itself at 
distances upto 2 when 0≤ ν<1, and among all the designs  
with no treatment Neighbor of itself at distances upto 3 
when − 1< ν <0. 
 

3. Characterization of optimal continuous block 

designs 
In the following sections, we are going to discuss 

the efficiency of CNBD (2) for the total effect in the 

model (M1), even if all the procedure can similarly be 
adapted to the case of CNBD (3) for the total effect in the 
model(M2). The optimal designs among all possible 
designs with the same parameters are characterized 
according to the method introduced by Kushner (1997). 
For details also refer to Kunert and Martin (2000) and 
Bailey and  Druilhet  (2004). For u=1, 2, . . .b, let Tdube 
the incidence matrix of the direct effects of the treatment 
in block u, 1≤u≤b. Then Td = (Td1,Td2,…Tdb)’ is just the 
incidence matrix of the direct effects. For each u, define 
Ldu=H Tdu, Rdu=H’Tdu. Thus, it is obvious that Ld= 
(Ib⊗H)Td and Rd= (Ib⊗H’) Td are exactly the incidence 
matrices of the left-Neighbor effects and of the right-
Neighbor effects. Define that two sequences of treatments 
on a block are equivalent if one sequence can be obtained 
from the other by relabeling the treatments and  denote by 
s the equivalence class of the sequence l on the block u.  
Because tr(Cdu) are in variant under permutations of 
treatment labels, so the value tr(Cdu) remains the same for 
any sequence in the same equivalence class. Thus, we can 
define, 
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where ni is the number of occurrences of treatment 

i in the sequence  l,mi is the number of times treatment i is 
on the  left-hand side of itself in the  sequence l and pi is 
the number of plots having  treatment i both on the left-
hand side and on the right-hand side. 
Optimal equivalence classes of sequences when k = 3 

or 4 

When k = 3 or 4, all the non-equivalent 
sequences are listed in the following two tables. 
 

Table 1: All the non-equivalent sequences when k=3 
No. Sequence v v1 C(S) 

1 aaa 0 1 0 
2 aab 1 1 1/3(ν2+ν+1) 
3 abc 3 0 1/2(ν2+ν+1) 

 

 

Table 2: All the non-equivalent sequences when k=4 
No. Sequence v v1 C(S) 

1 aaaa 0 1 0 
2 aabb 0 2 ν

2+1 
3 aaab 1 1 1/2(ν2+1) 
4 aabc 2 1 ν

2+1 
5 abcd 4 0 ν

2+1 
 

Proposition 1: 

When k = 3 or 4, for any ν ∈ (−1,1), a CNBD (2) 
is universally optimal for the total effects in the model 
(M1) among all possible designs with equal size. 
 

Proposition 2: 
When k ≥ 5, v ≥ 2 and v1 = 0 or 1 in any optimal 

sequence. 
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Proposition 3  

When   for any positive integer k 
≥ 5, if k is odd, then the optimal sequence has the form of 
‘a1a2a2a3a3· · ·a[k/2]a[k/2]’, while if k is even, then the 
optimal sequence has the form of ‘a1a1a2a2· · ·a[k/2]a[k/2]’, 
where a1,...,a[k/2] are distinct treatments. 
Proposition 4 

When any equivalence class of sequences c(s) 

with  has the following upper bound: 

 

 (4) 

With equality if and only if for all  
(i) mi = ni -1,  pi = ni =2; 

(ii) ni=  or  

Proposition 5  

When −1 < ν ≤ 0 and for k ≥ 8, no optimal 
sequence contains any treatment just once, i.e., v1 = 0 for 
any optimal sequence. 

 

4. Optimal equivalence classes of sequences 

when k ≥ 5 
Let l be sequence in an equivalence class. Denote 

by N1 and N2, respectively, the sets of treatments 
appearing just once and at least twice in l. Then N=N1∪ 

N2 is the set of distinct treatments in l. Let v1 =|N1|,v2 = 
|N2|andv = |N|, where  |N| denotes the cardinality of the set 
N. For illustration, under the condition of, 

the optimal treatment sequences for the 
given parameters {v1,v2} are listed together with the 
corresponding tr (Cdu) for k = 5, 6, 7, 8, … 16 in Tables 3 
to 14, respectively. Note that the sequence for a CNBD 
(2) is also listed in the last row for the convenience of 
comparison. 
Optimal equivalence classes of sequences when k=5 
 

Table 3: Optimal sequences for all possible pairs of {v,v1} for k=5 

S.No 
Optimal 

Sequence 
v v1 Tr (Cdu) 

1 Aabbb 2 0 1/5(7v2-4v+7) 
2 Abbbb 2 1 1/5(7v2-4v+7) 
3 Aabbc 3 0 1/10(17 v2-9 v +17) 
4 aabcc 3 0 1/10(17 v 2-9 v +17) 
5 aabcc 3 0 1/10(17 v2-9 v +17) 
6 abcde 5 0 1/2 (3v2 -  v  + 3) 

 

Among the above sequences, the sequence 
“abbcc” is the optimal sequence by Proposition 3.3 
Optimal equivalence classes of sequences when k=6

  
 

Table 4: Optimal sequences for all possible pairs of {v,v1} for k=6 

S.No 
Optimal 

Sequence 
V v1 Tr (Cdu) 

1 aaabbb 2 0 2(v2-v+1) 
2 abbbbb 2 1 1/3(2v2-v+2) 
3 aabbcc 3 0 1/2(5v2-4v+5) 
4 abbccc 3 0 1/6(13v2-11v+13) 
5 abcdef 6 0 2v2-v+2 

 

 

 

Among the above sequences, the sequence 
“aabbcc” is the optimal sequence by Proposition 3.3 
Similarly for k=7,…16, the optimal sequences can be 
derived and it can be concluded from the above tables 
that below are the optimal sequences for the 
corresponding block size “k” 
 

Table 5: Optimal sequences when k = 5 to 16 

Block Size 
Optimal 

Sequence 

5 abbcc 

6 aabbcc 

7 
aabbccc 

abbccdd 

8 aabbccdd 

9 
aaabbbccc 

aabbccddd 

abbccddee 

10 
aabbccddd 

abbccddee 

11 
aabbbcccddd 

aabbccddeee 

abbccddeeff 

12 
aabbccddeeff 

aaabbbcccddd 

aaaabbbbcccc 

13 
abbbbccccdddd 

aaabbbcccdddd 

abbccddeeffgg 

14 aabbccddeeffgghh 

15 
aaaaabbbbbccccc 

aaabbbccccdddeee 

abbccddeeffgghh 

16 
aaaaabbbbbcccccc 

aaaabbbbccccdddd 

aabbccddeeffgghh 
 

The below table represents all the optimal 
sequences for 5 ≤ k ≤ 16. Also Note that the below table 
shows the optimal sequence and the last column lists the 
values Tr(Cdu) of a CNBD (2) d.  

 

 

 

 

 



Jeevitha M., C. Santharam 

International Journal of Statistiika and Mathematika, ISSN: 2277- 2790 E-ISSN: 2249-8605, Volume 7 Issue 2                                                  Page 22 

Table 6: Optimal sequences for 5 ≤ k ≤ 16 
Block 

Size 

Optimal 

Sequence 
c (s*) tr(Cdu ) 

5 abbcc 1/10 (17ν2 − 9ν + 17) 1/2  (3ν2 −ν + 3) 
6 aabbcc 1/2  (5ν2 − 4ν + 5) (2ν2 −ν + 2) 

7 
aabbccc 

abbccdd 

1/14  (43ν2   − 44ν + 43) 1/14 
(44ν2   − 39ν +44) 

1/2  (5ν2 −3ν + 5) 

8 aabbccdd 4(ν2 − ν + 1) (3ν2 −2ν + 3) 

9 
aaabbbccc 

aabbccddd 

abbccddee 

1/2  (9ν2   − 12ν + 9)  2/3 (7ν2   
− 8ν + 7)               1/18 (83ν2 

− 85ν + 83) 
1/2  (7ν2 −5ν + 7) 

10 
aabbccddd 

abbccddee 

1/2  (27ν2   − 34ν + 27)    1/2 
(11ν2 − 12ν + 11) 

(4ν2 −3ν + 4) 

11 
aabbbcccddd 

aabbccddeee 

abbccddeeff 

1/11  (68ν2 − 62ν + 68) 
1/22(137ν2 − 164ν+137) 

1/22 (134ν2 − 147ν + 134) 
1/2  (9ν2 −7ν + 9) 

12 
aabbccddeeff 

aaabbbcccddd 

aaaabbbbcccc 

(8ν2− 7ν + 8)                  1/4 
(27ν2 − 36ν +27)        1/2 

(13ν2 − 20ν + 13) 
(5ν2 −4ν + 5) 

13 
abbbbccccdddd 

aaabbbcccdddd 

abbccddeeffgg 

1/26 (197ν2− 137ν + 197)  
1/26 (221ν2 − 296ν +221)   
1/26 (197ν2− 137ν + 197) 

1/2  (11ν2 −9ν + 11) 

14 aabbccddeeffgghh 1/2 (17v2-20v+17) (6ν2 −5ν + 6) 

15 
aaaaabbbbbccccc 

aaabbbccccdddeee 

abbccddeeffgghh 

1/2 (17ν2− 24ν + 17)     
(141ν2 − 192ν +141)        1/2 

(262ν2− 229ν + 262) 
1/2  (13ν2 −11ν + 13) 

16 
aaaaabbbbbcccccc 

aaaabbbbccccdddd 

aabbccddeeffgghh 

1/2 (17ν2− 24ν + 17)     
1/4(41ν2 − 62ν +41)        

(10ν2− 14ν + 10) 
(7ν2 −6ν + 7) 

 

5. Efficiency of CNBD (2) with blocks of size 5 ≤ k ≤ 16 
In this section we are going to discuss the Efficiency of CNBD (2) for the block size k=5, 6... 16. 

For a fixed k, we can find an optimal equivalence class of sequence s∗, which maximizes c(s) in (3). Any 
sequence in the optimal equivalence class is called optimal sequence. It was shown in Theorem 10 of Bailey and Druilhet 
(2004) that a designed∗ which has each sequence in s∗ equally often is universally optimal among all possible designs 
with the same size. Since the values t r(Cdu) are invariant to any block u for a CNBD (2), so we can define the efficiency 
of a CNBD (2) d relative to the optimal continuous block design d∗ as 

 
The below tables show the calculations of Tr (Cdu) and c(s*) when k=5, 6, 7,..., 16 

Efficiency of CNBD (2) when the block size k=5     
 

Table 7: Efficiency of CNBD (2) when k=5 
S.No v 

 
c(S*) 

 
tr(Cdu) Eff(d) 

1 -1 43.00 4.30 7.00 3.50 0.8140 
2 -0.8 35.08 3.51 5.72 2.86 0.8153 
3 -0.6 28.52 2.85 4.68 2.34 0.8205 
4 -0.4 23.32 2.33 3.88 1.94 0.8319 
5 -0.2 19.48 1.95 3.32 1.66 0.8522 
6 0 17.00 1.70 3.00 1.50 0.8824 
7 0.2 15.88 1.59 2.92 1.46 0.9194 
8 0.4 16.12 1.61 3.08 1.54 0.9553 
9 0.6 17.72 1.77 3.48 1.74 0.9819 

10 0.8 20.68 2.07 4.12 2.06 0.9961 
11 1 25.00 2.50 5.00 2.50 1.0000 
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From the above table it is evident that the efficiency of a 
CNBD (2) approaches to 1 as v tends to 1 for k = 5. In the 
same manner, it can verified that the efficiency of a 
CNBD (2) approaches to 1 as v tends to 1 for 
k=6,7,8,…16. The Efficiency of CNBD (2) d for v 

belongs to (-1, 1) are given in the above table for k=5, 
6…16. 
The following figure shows the relationship between the 
efficiency Eff(d) of a CNBD (2) d and v for 5≤ k ≤16. It 
can be seen that the efficiency of a CNBD (2) approaches 
to 1 as v tends to 1 for  any k. 
 

 
Figure 1: Efficiency of CNBD (2) when 5 ≤ k ≤16 

 

Summary and Conclusion 

In this research paper, we have investigated the optimality 
and efficiency of circular Neighbor balanced block 
design.  We have constructed the efficiency of circular 
neighbor balanced designs among all possible  block 
designs  with the same parameters the continuous block 
designs are characterized and the efficiencies of circular 
neighbor balanced designs with blocks of small size  k ≤ 
16 are illustrated. From Fig 1, we could see that the 
efficiency of CNBD (2) approaches 1 as v tends to 1 for 
block sizes k=5, 6,…,16. So we can conclude that the 
Circular neighbor balanced design is an efficient design. 
Thus we can conclude that CNBD (2) is always a good 
choice when the adjacent observation errors have strong 
positive correlation. 
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