Application of Fuzzy Relations for Selection of Crop Pattern

M. S. Bapat ${ }^{*}$, P. N. Kamble ${ }^{\#}$, S. N. Yadav ${ }^{\dagger}$
*Willingdon College, Sangli - 416415, Maharashtra, INDIA.
"Dr. Babasaheb Ambedkar Marathwada University, Aurangabad - 431004, Maharashtra, INDIA.
${ }^{\dagger}$ Research Scholar, Shivaji University, Kolhapur - 416414, Maharashtra, INDIA.
Corresponding Addresses:

Research Article

Abstract: The purpose of this paper is to develop an application of multi-objective decision making model for farming system. The information about the crops provided by the farmers is represented by means of fuzzy relations. The crop pattern based on multiobjective decision making is obtained by means of fuzzy relations. The crops are ranked according to their profitability. Fuzzy majority is represented by a fuzzy quantifier, and applied in the aggregation, by means of OWA operator. The weights of OWA are calculated by the fuzzy quantifier.
Key words: Multi-objective decision making; fuzzy relation; fuzzy majority; farming system.

1. Introduction

When in an environment in which the goals, constraints, information and consequences of available actions are not precisely known the uncertainty is of a qualitative nature. In this situation, use of fuzzy set theory might provide the flexibility needed to represent the uncertainty resulting from the lack of knowledge. It can be used to design a decision process. Several authors have provided results on decision making by means of fuzzy set theory [8]. The different fuzzy relations are obtained frommultiple objectives and then fused it into a single fuzzy relation [7]. A collective fuzzy relationis obtained by aggregation a set of "individual" fuzzy relations using OWA operator [5] guided by a relative linguistic quantifier [6].

2. Preliminaries

Let $D=\left\{a_{1}, \ldots, a_{i}, \ldots, a_{n}\right\}$ be a finite set of decision actions evaluated by attributes $\Omega=\left\{k_{1}, \ldots, K_{j}, \ldots, K_{m}\right\}$ with weights $W=\left\{w_{1}, \ldots, w_{j}, \ldots, w_{m}\right\}$. Let a set of all fuzzy relations be $P^{(k)}$ where $P^{(k)}=\left(p_{i j}^{(k)}\right)_{n \times n}$, and $p_{i j}^{(k)}$ represents the intensity of decision action a_{i} over decision action a_{j} with respect to $k^{t h}$ attribute.

Definition 2.1 An OWA operator of dimension m is a mapping $\phi: R^{m} \rightarrow R$ with an associated weight vector $w=\left(w_{1}, \ldots, w_{j}, \ldots, w_{m}\right)^{T}$ such that

$$
\sum_{k=1}^{m} w_{k}=1 \text { and } \phi\left(a_{1}, a_{2} \ldots, a_{m}\right)=\sum_{k=1}^{m} w_{k} b_{k}
$$

where b_{k} is the k th largest of $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$. In [6], Yager suggested a way to compute the weights (i.e., $\left.w_{k}, k=1,2, \cdots, m\right)$ of the OWA operator using linguistic quantifiers, which, in the case of a non-decreasing proportional quantifier Q, is given by this expression:

$$
w_{k}=Q\left(\frac{k}{m}\right)-Q\left(\frac{(k-1)}{m}\right), \forall k
$$

being the membership function of a non-decreasing proportional quantifier Q, as follows:

$$
Q(x)= \begin{cases}0, & 0 \leq x<a \\ \frac{x-a}{b-a}, & a \leq x \leq b \\ 1, & b<x \leq 1\end{cases}
$$

With $a, b \in[0,1]$. When it is used a fuzzy linguistic quantifier Q to compute the weights of the OWA operator ϕ, it is symbolized by ϕ_{Q}. Using an OWA operator ϕ_{Q}, we derive a collective relation, $P^{c}=\left(p_{i j}^{c}\right)_{n \times n}$ indicating the global information between every pair of decision actions according to majority of attributes, which is represented by Q. In this case,

$$
P_{i j}^{c}=\phi_{Q}\left(p_{i j}^{(1)}, \ldots, p_{i j}^{(k)}, \ldots, p_{i j}^{(m)}\right)=\sum_{k=1}^{m} w_{k} q_{i j}^{(k)}
$$

Where $q_{i j}^{(k)}$ is the k th largest value in the set $\left\{p_{i j}^{(1)}, \ldots, p_{i j}^{(m)}\right\}$.
Aggregation phase: Using the concept of fuzzy majority represented by a linguistic quantifier and applied in the aggregation operations by mean of OWA operators [5], a collective fuzzy relation is obtained from all individual fuzzy relations. Exploitation phase: Using the concept of fuzzy majority the choice degrees of decision actions are used i.e., the quantifier guided dominance degree is used. These choice degrees will act over the collective relations supplying a selection set of decision actions.

3. The Decision Process

In this section we will deal with choosing the decision action(s) which is(are) to be desirable. For that reason, we have a set of m individual fuzzy relations. These individual relations have to be fused into a single fuzzy relation by aggregation procedures. Then, selection is made by aggregation and exploitation. The aggregation phase defines a collective fuzzy relation. This indicates the global information between every ordered pair of decision actions. The exploitation phase transforms the global information about the decision actions into a global ranking of them, supplying a selection set of decision actions.

4. Case study and Research Methodology

The crisp data of farming system regarding crop pattern issystematically taken under the experts'
supervision. This crisp data is considered for the purpose of computational results and is analyzed to know the best decision action to select the best decision action. A decision situation in this model is characterized by the following components
Crop Selection Decision System:
The problem we will deal is that of choosing the best profitable crop among a finite set, $D=\left\{a_{1}\right.$, $\left.\mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{n}}\right\}(\mathrm{n} \geq 2$)ofdecision actions(crops) evaluated by attributes $\Omega=\left\{k_{1}, \ldots, K_{j}, \ldots, K_{m}\right\}$.The decision actions will be classified from the best to worst,

5. Results and Discussions

The Multi-objectiveDecision Making problem has been solved by using by fuzzy relation approach as mentioned. The solution has been presented in Table2.For a primary data of a typical farming system on kharif crops in Sangli district the following results were observed.

Decision actions

Jawar $\left(a_{1}\right)$, Soyabean $\left(a_{2}\right)$, Groundnut $\left(a_{3}\right)$, Maize $\left(a_{4}\right)$, Moong $\left(a_{5}\right)$, Ghewada $\left(a_{6}\right)$.

Attributs

Total production (k_{1}), Preparation of soil and sowing $\left(k_{2}\right)$, Nutrients $\left(k_{3}\right)$, Good quality seed $\left(k_{4}\right)$, Protection from weeds $\left(\mathrm{k}_{5}\right)$, Spraying of pesticides $\left(\mathrm{k}_{6}\right)$, Harvesting (k_{7}), Threshing (k_{8}), Storage (k_{9}), Marketing $\left(\mathrm{k}_{10}\right)$, Effect on soil fertility $\left(\mathrm{k}_{11}\right)$, Production cost $\left(\mathrm{k}_{12}\right)$, Net profit (k_{13}).

Table 1: Characteristics of crisp values

| Sr.
 No. | Decision
 Action (D) | k_{1} | k_{2} | k_{3} | k_{4} | k_{5} | k_{6} | k_{7} | k_{8} | k_{9} | k_{10} | k_{11} | k_{12} | k_{13} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | $9-10$ | 9 | 1.32 | 1.25 | 12.0 | 1.0 | 4.0 | 7.0 | 4.0 | 1.6 | 0.2 | 41.17 | 4.8 |
| 2 | a_{2} | $6.5-7$ | 9 | 2.46 | 2.70 | 5.5 | 2.0 | 4.0 | 4.5 | 2.8 | 9.5 | 0.9 | 33.91 | 3.1 |
| 3 | a_{3} | $7.5-9$ | 12 | 2.04 | 7.50 | 7.0 | 1.0 | 2.5 | 4.0 | 5.6 | 1.9 | 0.8 | 44.03 | 3.0 |
| 4 | a_{4} | $7-7.5$ | 9 | 5.29 | 1.50 | 6.5 | 1.0 | 4.0 | 5.0 | 3.0 | 1.4 | 0.2 | 36.39 | 3.3 |
| 5 | a_{5} | $6.5-7.5$ | 9 | 1.50 | 1.00 | 5.0 | 1.0 | 4.0 | 1.56 | 1.04 | 0.35 | 0.6 | 24.45 | 4.0 |
| 6 | a_{6} | $6.2-7.0$ | 9 | 1.50 | 2.70 | 6.0 | 2.0 | 4.0 | 2.56 | 2.0 | 0.68 | 0.7 | 30.38 | 3.1 |

Decision Making

We find the intensityof the decision action a_{i} over a_{j} for attribute $k_{j}, p_{i j}^{k}$ by using the formula
$p_{i j}^{k}=\frac{u_{i}^{k}}{u_{i}^{k}+u_{j}^{k}}, i \neq, j . k=1,2, \ldots, 13$.
There are thirteen relations $\boldsymbol{P}^{(1)}, \ldots, \boldsymbol{P}^{(13)}$. They are listed below:

$$
\begin{aligned}
& P^{1}=\left(\begin{array}{cccccc}
- & 0.58 & 0.53 & 0.55 & 0.58 & 0.59 \\
0.41 & - & 0.45 & 0.48 & 0.49 & 0.50 \\
0.46 & 0.55 & - & 0.53 & 0.54 & 0.56 \\
0.45 & 0.52 & 0.47 & - & 0.51 & 0.52 \\
0.42 & 0.51 & 0.46 & 0.49 & - & 0.51 \\
0.41 & 0.49 & 0.44 & 0.48 & 0.59 & -
\end{array}\right) P^{2}=\left(\begin{array}{cccccc}
- & 0.5 & 0.43 & 0.5 & 0.5 & 0.5 \\
0.5 & - & 0.43 & 0.5 & 0.5 & 0.5 \\
0.57 & 0.57 & - & 0.57 & 0.57 & 0.57 \\
0.5 & 0.5 & 0.43 & - & 0.5 & 0.5 \\
0.5 & 0.5 & 0.43 & 0.5 & - & 0.5 \\
0.5 & 0.5 & 0.43 & 0.5 & 0.5 & -
\end{array}\right) \\
& P^{3}=\left(\begin{array}{cccccc}
- & 0.34 & 0.4 & 0.2 & 0.46 & 0.46 \\
0.64 & - & 0.53 & 0.3 & 0.61 & 0.61 \\
0.61 & 0.47 & - & 0.27 & 0.57 & 0.57 \\
0.8 & 0.69 & 0.73 & - & 0.78 & 0.78 \\
0.54 & 0.39 & 0.43 & 0.22 & - & 0.22 \\
0.54 & 0.39 & 0.43 & 0.22 & 0.5 & -
\end{array}\right) \quad P^{4}=\left(\begin{array}{cccccc}
- & 0.33 & 0.15 & 0.5 & 0.57 & 0.31 \\
0.68 & - & 0.26 & 0.68 & 0.73 & 0.5 \\
0.85 & 0.74 & - & 0.85 & 0.88 & 0.74 \\
0.5 & 0.33 & 0.15 & - & 0.57 & 0.33 \\
0.43 & 0.27 & 0.12 & 0.43 & 0.5 & 0.27 \\
0.68 & 0.5 & 0.26 & 0.68 & 0.73 & -
\end{array}\right) \\
& P^{5}=\left(\begin{array}{cccccc}
- & 0.33 & 0.5 & 0.5 & 0.5 & 0.33 \\
0.66 & - & 0.66 & 0.66 & 0.66 & 0.5 \\
0.5 & 0.33 & - & 0.5 & 0.5 & 0.33 \\
0.5 & 0.33 & 0.5 & - & 0.5 & 0.33 \\
0.5 & 0.33 & 0.5 & 0.5 & - & 0.33 \\
0.66 & 0.5 & 0.66 & 0.66 & 0.66 & -
\end{array}\right) P^{6}=\left(\begin{array}{cccccc}
- & 0.69 & 0.63 & 0.65 & 0.71 & 0.67 \\
0.31 & - & 0.44 & 0.46 & 0.52 & 0.48 \\
0.37 & 0.56 & - & 0.52 & 0.58 & 0.54 \\
0.35 & 0.54 & 0.48 & - & 0.57 & 0.52 \\
0.29 & 0.48 & 0.42 & 0.43 & - & 0.45 \\
0.33 & 0.52 & 0.46 & 0.48 & 0.55 & -
\end{array}\right) \\
& P^{7}=\left(\begin{array}{cccccc}
- & 0.5 & 0.62 & 0.5 & 0.5 & 0.5 \\
0.5 & - & 0.62 & 0.5 & 0.5 & 0.5 \\
0.38 & 0.38 & - & 0.38 & 0.38 & 0.38 \\
0.5 & 0.5 & 0.62 & - & 0.5 & 0.5 \\
0.5 & 0.5 & 0.62 & 0.5 & - & 0.5 \\
0.5 & 0.5 & 0.62 & 0.5 & 0.5 & -
\end{array}\right) P^{8}=\left(\begin{array}{cccccc}
- & 0.61 & 0.64 & 0.58 & 0.82 & 0.73 \\
0.39 & - & 0.53 & 0.47 & 0.74 & 0.64 \\
0.36 & 0.47 & - & 0.44 & 0.72 & 0.62 \\
0.42 & 0.53 & 0.56 & - & 0.76 & 0.66 \\
0.18 & 0.26 & 0.28 & 0.24 & - & 0.38 \\
0.26 & 0.36 & 0.38 & 0.33 & 0.62 & -
\end{array}\right) \\
& P^{9}=\left(\begin{array}{cccccc}
- & 0.59 & 0.42 & 0.57 & 0.79 & 0.66 \\
0.41 & - & 0.33 & 0.48 & 0.73 & 0.58 \\
0.58 & 0.66 & - & 0.65 & 0.84 & 0.74 \\
0.43 & 0.52 & 0.35 & - & 0.74 & 0.5 \\
0.21 & 0.27 & 0.16 & 0.26 & - & 0.34 \\
0.33 & 0.42 & 0.26 & 0.4 & 0.66 & -
\end{array}\right) P^{10}=\left(\begin{array}{cccccc}
- & 0.63 & 0.46 & 0.54 & 0.82 & 0.70 \\
0.37 & - & 0.33 & 0.41 & 0.73 & 0.58 \\
0.54 & 0.66 & - & 0.58 & 0.84 & 0.74 \\
0.46 & 0.59 & 0.42 & - & 0.79 & 0.66 \\
0.18 & 0.27 & 0.16 & 0.21 & - & 0.34 \\
0.3 & 0.42 & 0.26 & 0.33 & 0.66 & -
\end{array}\right) \\
& P^{11}=\left(\begin{array}{cccccc}
- & 0.18 & 0.2 & 0.5 & 0.25 & 0.22 \\
0.82 & - & 0.53 & 0.82 & 0.6 & 0.56 \\
0.8 & 0.47 & - & 0.8 & 0.57 & 0.53 \\
0.5 & 0.18 & 0.2 & - & 0.25 & 0.22 \\
0.75 & 0.4 & 0.43 & 0.75 & - & 0.46 \\
0.77 & 0.44 & 0.47 & 0.77 & 0.54 & -
\end{array}\right) P^{12}=\left(\begin{array}{cccccc}
- & 0.55 & 0.48 & 0.53 & 0.63 & 0.58 \\
0.45 & - & 0.44 & 0.48 & 0.58 & 0.53 \\
0.52 & 0.56 & - & 0.55 & 0.64 & 0.59 \\
0.47 & 0.52 & 0.45 & - & 0.6 & 0.55 \\
0.37 & 0.42 & 0.36 & 0.40 & - & 0.45 \\
0.42 & 0.47 & 0.41 & 0.45 & 0.55 & -
\end{array}\right)
\end{aligned}
$$

$$
P^{13}=\left(\begin{array}{cccccc}
- & 0.61 & 0.61 & 0.59 & 0.55 & 0.61 \\
0.39 & - & 0.5 & 0.48 & 0.43 & 0.5 \\
0.39 & 0.5 & - & 0.48 & 0.43 & 0.49 \\
0.41 & 0.52 & 0.52 & - & 0.45 & 0.52 \\
0.45 & 0.57 & 0.57 & 0.55 & - & 0.56 \\
0.39 & 0.5 & 0.51 & 0.58 & 0.44 & -
\end{array}\right) .
$$

Method I Simple Average Fusion Method

By using simple average

$$
P_{i j}^{C}=\frac{1}{13} \sum_{i=1, j=1}^{6,13} a_{i j}, i \neq j
$$

we can fuse the relations to single relation as shown below.

$$
P_{i j}^{C}=\left(\begin{array}{cccccc}
- & 0.495 & 0.42 & 0.395 & 0.59 & 0.527 \\
0.502 & - & 0.465 & 0.48 & 0.601 & 0.462 \\
0.528 & 0.532 & - & 0.547 & 0.62 & 0.57 \\
0.48 & 0.48 & 0.45 & - & 0.58 & 0.51 \\
0.41 & 0.40 & 0.38 & 0.43 & - & 0.41 \\
0.47 & 0.46 & 0.43 & 0.48 & 0.57 & -
\end{array}\right)
$$

We exploit fused relations by using the same method. Theranking of the decision actions acting over the collective fuzzy $\begin{array}{lcccccccc} & & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} \\ \text { relation supply the following values. } \quad \begin{array}{llllll} & X & 0.485 & 0.502 & 0.559 & 0.5 \\ & & & 0.406 & 0.482\end{array} \\ & \text { where } X=\frac{1}{5} \sum_{j}^{6} & a_{i j}, i \neq j . & & & \end{array}$
Clearly the maximal set is: $\left\{a_{3}\right\}$. Therefore, the selection set of decision actions for selection procedure is the singleton $\left\{a_{3}\right\}$. Ranking of crops for their profitability is $\left\langle a_{3}, a_{2}, a_{4}, a_{1}, a_{6}, a_{5}\right\rangle$.

Method II Quantifier Guided Fusion Method (weighted average)

Most of the decision actions satisfies at least half of the attributes. With the help of these fuzzy quantifiers we can order the decision actions in the following way.

Using the fuzzy majority criteria with the fuzzy quantifier "at least half", with the pair $(0,0.5)$, and corresponding OWA operator with the weighting vector, $W=\left[\frac{2}{13}, \frac{2}{13}, \frac{2}{13}, \frac{2}{13}, \frac{2}{13}, \frac{2}{13}, \frac{1}{13}, 0,0,0,0,0,0\right]$.
The collective fuzzy relation $P^{c}=\left(p_{i j}^{c}\right)_{n \times n}$ indicating the intensity between every pair of alternatives to the majority of attributes, which is represented by Q. In this case,
$P_{i j}^{c}=\phi_{Q}\left(p_{i j}^{(1)}, \ldots, p_{i j}^{(k)}, \ldots, p_{i j}^{(m)}\right)=\sum_{k=1}^{m} w_{k} q_{i j}^{(k)}$, where $q_{i j}^{(k)}$ is the k th largest value in the set $\left\{p_{i j}^{(1)}, \ldots, p_{i j}^{(m)}\right\}$. Therefore, the collective fuzzy relation is:

$$
P_{i j}^{C}=\left(\begin{array}{cccccc}
- & 0.6131 & 0.5798 & 0.5759 & 0.7129 & 0.6537 \\
0.6083 & - & 0.5529 & 0.5967 & 0.6921 & 0.5783 \\
0.6190 & 0.6190 & - & 0.6560 & 0.7359 & 0.6583 \\
0.5437 & 0.5614 & 0.5606 & - & 0.6959 & 0.6075 \\
0.5306 & 0.4890 & 0.4845 & 0.5391 & - & 0.4929 \\
0.5937 & 0.5021 & 0.5198 & 0.5890 & 0.6390 & -
\end{array}\right)
$$

Exploitation Process:

We use the fuzzy quantifier "most" with the pair (0.3 , 0.8) and ($0.7,1$), i.e., the corresponding OWA operator with the weighting vector $W=\left[w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right]$.
Calculation of W:
$w_{k}=Q\left(\frac{k}{m}\right)-Q\left(\frac{(k-1)}{m}\right) \forall k$
being the membership function of a non-decreasing proportional quantifier Q, as follows:

$$
\begin{aligned}
& Q(x)= \begin{cases}0, & 0 \leq x<a, \\
\frac{x-a}{b-a}, & a \leq x \leq b, \\
1, & b<x \leq 1,\end{cases} \\
& Q(x)= \begin{cases}0, & 0 \leq x<0.3, \\
\frac{x-0.3}{0.5}, & 0.3 \leq x \leq 0.8, \\
1, & x \geq 0.8,\end{cases}
\end{aligned}
$$

With $\quad m=5, k=1,2,3,4,5 . W=\left[0, \frac{1}{5}, \frac{2}{5}, \frac{2}{5}, 0\right]$. The quantifier guided choice degrees of decision actions acting over the collective fuzzy relation give the following values.
$\begin{array}{lllllll}a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6}\end{array}$ $Q^{G D D_{t}} 0.631480 .6261 \quad 0.68056 \quad 0.61488 \quad 0.50724 \quad 0.54394$

These values represents the dominance that one decision actions has over the "most" decision actions according to "at least half" of the attributes.

Clearly the maximal set is: $X^{Q G D D}=\left\{a_{3}\right\}$. Therefore, the selection set of decision actions for selection procedure is the singleton $\left\{a_{3}\right\}$. Ranking of crops for their profitability is $\left\langle a_{3}, a_{1}, a_{2}, a_{4}, a_{6}, a_{5}\right\rangle$. Similarly for the fuzzy quantifier "most" with the pair $(0.7,1)$ and $m=5, k=1,2,3,4,5 \cdot W=\left[0,0,0, \frac{1}{3}, \frac{2}{3}\right]$. The quantifier guided choice degrees of decision acting over the collective fuzzy relation givethe following values. $Q^{G D_{t}} 0.67370 .6158 \quad 0.6839 \quad 0.6366$
These values represents the dominance that one decision action has over the "most" decision actions according to "at least half" of the attributes.

Clearly the maximal set is: $X^{Q G D D}=\left\{a_{3}\right\}$. Therefore, the selection set of decision actions for selection procedure is the singleton $\left\{a_{3}\right\}$.rankingof crops for their profitability is $\left\langle a_{3}, a_{1}, a_{4}, a_{6}, a_{2}, a_{5}\right\rangle$.

6. Conclusions

In this paper we developed the application of MODM problem in farming system, where the information supplied by the group of experts (farmers) is modeled in terms of fuzzy relations. These fuzzy relations are then fused into single fuzzy relation. The concept of fuzzy majority for the aggregation and exploitation of the information in decision making is used.A quantifier guided choice degree of decision actions is used to quantify the dominance that one decision action has over all others in a fuzzy majority sense.

References

1. Bapat M.S. and Yadav S.N. (2009), "Fuzzy Sets in Sugarcane Industry Decision. International Journal of Tropical Agriculture ", Vol. 27, NO. 1-2 pp 247-250.
2. Bellman, R. and Zadeh, L.A. (1970), "Decision making in a fuzzy environment Management Science", Vol 17, pp141-164.
3. Hwang C. L., Yoon K., Multiple Attribute Decision Making and Applications: A state-of -the-Art Survey, (lecture Notes in Economics and Mathematical Systems Series 1860. New York; Springer-Verlag, 1981.
4. Klir G. J., Yuan Bo, "Fuzzy sets and fuzzy logic: Theory and applications", Prentice - Hall India Pvt. Ltd., New Delhi, 2000.
5. R. R. Yagar, Onordered weighted averaging aggregation operators in multicriteria decision making, IEEE Trans. Systems Man Cybernet 18 (1988) 183-190.
6. R. R. Yagar, Quantifier guided aggregation using OWA operators, Int. J. Intell. Syst. 11 (1996) 49-73.
7. VaniaPeneva, Ivan Popchev, "Multicriteria Decision Making Based on Fuzzy Relations", Cybernetics and Information technologies. Vol 8. No. 4 (2008).
8. W. J. M. Kickert, Fuzzy Theories on Decision making (Nijhoff, 1978).
9. YadavS.N. and Bapat M.S. (2011), "An Application of Some Classes of FuzzyIntersections (t-norms) toIndividual Decision Making Problem. Journal of Mathematical Sciences ", Vol. 6 Issue1, pp83-96.
10. Yadav S.N. and Bapat M.S. (2012), "Multiperson Decision Making Based on Fuzzy Relations. Journal of Mathematical Sciences ", Vol. 7 Issue3, pp193-202.
