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Abstract: This paper deals with the Bayesian estimation and 
prediction of three-parameter exponentiated Weibull distribution. 
The parameters are estimated using likelihood based inferential 
procedure: classical as well as Bayesian.The quasi Newton-
Raphson algorithm is applied to obtain the maximum likelihood 
estimates and associated probability intervals. The Bayesian 
estimates of the parameters of exponentiated Weibull distribution 
are obtained using Markov chain Monte Carlo (MCMC) simulation 
method. We have obtained the probability intervals for parameters, 
hazard and reliability functions. The posterior predictive check 
procedure is used for evaluating model fit. All the Bayesian 
computations are performed in OpenBUGS and R software.  A real 
data set is analyzed for illustration of the proposed Bayesian 
approach. 
Keywords:  Exponentiated Weibull distribution, Markov chain 
Monte Carlo, Bayesian estimation, OpenBUGS.  
 

1.  Introduction 
  The two-parameter Weibull distribution has been the 
most popular model for modeling lifetimes, see for 
instance Murthy et al.  (2004) and Rinne (2009). Its major 
weakness is its inability to accommodate nonmonotone 
hazard rates (in particular, bathtub shaped hazard rates). 
This has lead to the need to seek generalizations of the 
two-parameter Weibull distribution. The first 
generalization allowing for nonmonotone hazard rates, 
including the bathtub shaped hazard rate, is the 
exponentiated Weibull (EW) distribution due to 
Mudholkar and Srivastava (1993) and Mudholkar et al. 
(1995). It has been well established in the literature that 
the EW distribution provides significantly better fits than 
traditional models based on the exponential, gamma, 
Weibull and log-normal distributions. The EW 
distribution can be widely and effectively used in 
reliability applications because it has a wide variety of 
shapes in its density and failure rate functions, making it 
useful for fitting many types of data. The exponentiated 
Weibull family is an extension of the Weibull family 
obtained by adding an additional shape parameter, 
(Nadarajah 2006) and (Pham and Lai, 2007). The beauty 
and importance of this distribution lies in its ability to 
model monotone as well as non-monotone failure rates 
which are quite common in reliability and biological 

studies. The applications of the exponentiated Weibull 
(EW) distribution in reliability and survival studies were 
illustrated by Mudholkar et al. (1995). Statistical 
properties and parametric characterizations of the density 
function discussed by Jiang and Murthy (1999) and 
Mudholkar and Hutson (1996). Other statistical properties 
of this distribution are discussed by Mudholkar and 
Hutson (1996) and Nassar and Eissa (2003).  Jiang and 
Murthy (1999) has proposed a graphical approach for the 
estimation of parameters. Mudholkar and Srivastava 
(1993) determined MLE of the parameters using 
computer packages. The Bayesian estimation problem is 
discussed by Singh et al. (2005b) and Nassar and Eissa 
(2004). Choudhury (2005) proposed a simple derivation 
for the moments of the EW model.  Pal et al. (2006) 
introduced many properties and obtained some inferences 
for the three parameter EW model.  Nassar and Eissa 
(2003, 2004), studied a two-parameter EW model. They 
gave some of its properties and estimated the parameters 
by using the maximum likelihood and Bayes methods 
based on type II censored data. Singh et al. (2005a) did 
essentially the same as Nassar and Eissa (2004) except for 
the choice of a non-informative prior instead of an 
informative prior used by Nassar and Eissa. Singh et al. 
(2005b) estimated the parameters of a three-parameter 
EW distribution using type II censored sample. 
Frequentist as well as Bayes methods were used in 
obtaining the estimates. The Bayes estimates were 
developed under LINEX loss function and non-
informative prior. Kim et al. (2011) obtained the 
maximum likelihood and Bayes estimators for the two 
shape parameters and the reliability function of the EW 
model based on progressive type-II censored sample.  
Jaheen and Harbi (2011) has obtained the Bayes estimates 
of the parameters using Markov chain Monte Carlo. An 
excellent review of EW model is presented in  Nadarajah 
(2012). The rest of this paper is organized as follows. In 
Section 2, we describe the exponentiated Weibull model 
and its properties. The maximum likelihood estimation of 
the parameters and associated confidence intervals are 
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given in Section 3.  In Section 4, the Bayesian model 
formulation is discussed under independent priors for the 
parameters, gamma priors for shape parameters and 
uniform prior for scale parameter. The data for illustration 
of methodology is given in Section 5.  In this section, the 
ML estimators of the parameters, approximate confidence 
intervals are presented. We cover Bayesian analysis using 
the MCMC simulation in Section 6. In this section, the 
Bayes estimates and credible intervals of parameters, 
hazard and reliability functions are presented.  In Section 
7 we consider the predictive check method in order to 
give an assessment of the performance of the model for 
the given data. Section 8 concludes the paper. 
 

2. The Model  
 The cumulative distribution function(cdf) of the 
exponentiated Weibull distribution with three parameters 
is given by,  

     ( ){ }( ) 1 exp ; 0F x x x
a

bl� �= - - >� �� �
 (1) 

where 0a >  and 0b >  are shape parameters and 0l >  
is a scale parameter. When 1a =  the model (1) reduces to 
the Weibull distribution.  The exponentiated Weibull 
distribution will be denoted by ( , , )EW a b l .   
 The probability density function(pdf) is given by 
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 The reliability/survival function is 
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Figure 1: The probability density functions of EW distribution for 

different values of a , for 1, 1b l= = . 

It can be used in reliability applications and biological 
studies because it accommodates nearly all types of 
failure rates both unimodal and bathtub. Mudholker and 
Huston (1996) showed that the density function of the 
EWM is decreasing when 1ab <  and unimodal when 

1ab > . Some of the typical exponentiated Weibull 
density functions for different values of a  and for 

1, 1b l= =  are depicted in Figure 1. It is clear from the 
Figure 1 that the density function of the exponentiated 
Weibull distribution can take different shapes. The 
distinct types of hazard shapes are illustrated in Figure 2 
for some different parameter combinations of the 
exponentiated Weibull distribution. 
 

 
Figure 2: The hazard function of EW distribution for 1l =  and 

different values of anda b . 

 
 The exponentiated Weibull distribution accommodates 
unimodal, bathtub and a broad variety of monotone 
hazard functions depending on the parameter values over 
the regions of the space of the shape parameters 0a >  
and 0b > , separated by the boundary 1, 1a b= =  and the 
curve 1a b = , Figure 3. Continue to enumerate some 
properties of the hazard function. 

I. If 1b >  and 1a b ³ , we have ( )h x is increasing, 
II.  If 1b < and 1a b £ , we have ( )h x is decreasing, 

III.  If 1b >  and 1a b < , we have ( )h x  is with bathtub 
unique change point, 

IV. If 1b <  and 1a b > , we have ( )h x  is unimodal with 
unique change point. 

Further the monotonicities are strict except for the 
exponential distribution corresponding to 1 and 1a b= = . 
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Figure 3: The display of the four regions, which separate the 

parameter domain for shape properties of the hazard function, the 
curve represents 1ab = . 

 The quantile function is given by 
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 The random deviate can be generated from ( , , )EW a b l
by 
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where u has the (0, 1)U distribution. 
 

3.  Maximum likelihood estimation (MLE) and 
Approximate confidence intervals 

 In this section, we brie�y discuss the maximum 
likelihood estimators (MLE’s) of the ( , , )EW a b l
distribution and discuss their asymptotic properties to 
obtain approximate confidence intervals based on MLE’s. 
 Let 1( , , )nx x x= �  be a random sample of size n from 

( , , )EW a b l , then the log-likelihood function 
( , , | )xa b l�  can be written as;   
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 To obtain the MLE’s of a , b  andl , we can maximize 
(7) directly with respect to a , b  andl  or we can solve 
the following three non-linear equations using Newton-
Raphson method.  
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 The ( )100 1  %g-  confidence intervals for a , b  and
l can be obtained from the usual asymptotic normality of 
the maximum likelihood estimators with ( ) ( )ˆˆ ,   var vara b

and ( )ˆvar l estimated from the inverse of the observed 

Fisher information matrix, that is, the inverse of the 
matrix of second derivatives of the log-likelihood 
function locally at â , b̂  and ˆl . Hence, from the 
asymptotic normality of MLEs, approximate 

( )100 1  %g-  confidence intervals for a , b  andl can be 
constructed as 

/2ˆ ˆ( )z varga a± ; /2
ˆ ˆ( )z vargb b± and 

/2
ˆ ˆ( )z vargl l±    

 where /2zg  is the upper percentile of standard normal 

variate. 
 

4. Bayesian model formulation 
 Given a set of data  1( , , )nx x x= �  from ( , , )EW a b l , 
the likelihood function is given by            
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where  
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 The Bayesian model is constructed by specifying the 
prior distributions for the model parametersa , b  andl , 
and then multiplying with the likelihood function 

( ), , |L xa b l  for the given data 1( , , )nx x x= �  to obtain 

the posterior distribution function using Bayes theorem. 
Denote the prior distribution of a , b  andl  as ( , , )p a b l
. The joint posterior is 
  ( , , | ) ( , , | ) ( , , )p x L x pa b l a b l a b lµ  
Priors for the parameters 
We assume the independent gamma prior for 

1 1~ ( , )G a ba , 2 2~ ( , )G a bb   and uniform priors 

3 3~ ( , )U a bl   as 
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Posterior distribution  
Combining the likelihood function with the prior via 
Bayes' theorem yields the posterior up to proportionality 
as 

( ) 11 11 2
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 The posterior is quite messy and no close form 
inferences are possible. We, therefore, propose to 
consider MCMC methods to simulate samples from the 
posterior so that sample-based inferences can be easily 
drawn.  The samples are generated by running a suitably 
constructed Markov chain that eventually converges to 
the target distribution (called stationary or equilibrium) 
which, in our case, is the posterior distribution 

( , , | )p xa b l . 
 We can construct these chains in several ways, but all 
of them, including the Gibbs sampler (Gelfand and Smith, 
1990), are special cases of the general framework of 
Metropolis et al. (1953) and Hastings (1970). 
 

Gibbs Sampler: Algorithm 
 The full conditionals of a , b  andl , upto 
proportionality to implement the Gibbs sampler, can be 
specified as 

1. Full conditionals of a  given b , l and x : 

 ( ) { }11
1 1| , , expa np x b Ta b l a a+ -µ -  (11) 

2. Full conditional of b  given a , l  and x   
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3. Full conditional of l  given a , b  and x : 
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As the three-parameter exponentiated Weibull 
distribution is not available in OpenBUGS, it requires 
incorporation of a module in ReliaBUGS which is 
subsystem of OpenBUGS. A module 
dexpo.weib3_T(alpha, beta, lambda) is written in 
Component Pascal for three-parameter exponentiated 
Weibull, the corresponding computer program can be 
obtained from authors, to perform full Bayesian analysis 
in OpenBUGS using the method described in Thomas et 
al. (2006), Thomas (2010), Kumar et al. (2010) and Lunn 
et al. (2013). 
Gibbs Sampler: Implementation 

1. Select an initial value ( )(0) (0) (0) (0) , ,d a b l=  to 

start the chain. 

2. Suppose at the ith-step, ( ) , ,d a b l= takes the value 

( )( ) ( ) ( ) ( ) , ,i i i id a b l=  then from full conditionals, we 

generate 
 ( 1)ia +  from ( )( ) ( )| , ,i ip xa b l  

 ( 1)ib +  from ( )( 1) ( )| , ,i ip xb a l+     and 

 ( 1)il +  from ( )( 1) ( 1)| , ,i ip xl a b+ + . 

3. This completes a transition from ( )id  to ( 1)id +  
4. Repeat Step 2, N times. 

 

MCMC output: Posterior sample  
 Monitor the convergence using convergence 
diagnostics (trace and ergodic mean plots). Suppose that 
convergence have been reached after 'B' iterations (the 
burn-in period). Discard the observations 

( )(1) (2) ( ), , , Bd d d�  and retain the observations 

( )( ) ( )1 1
;  1 1  ;  1,  2, , ;  1

B j L
B M L N j M Ld + + -� �+ + - £ = ³� �

� �
� which 

are viewed as being an independent sample from the 
stationary distribution of the Markov chain that is 
typically the posterior distribution, where L is the lag (or 
thin interval). 
 For the posterior analysis we have the MCMC output 

(posterior sample) ( )(1) ( ) ( ), , , ,j Md d d� � ,  where 

      ( )( ) ( ) ( ) ( ) , , ; 1,2, ,j j j j j Md a b l= = � . 

 Thus MCMC output is referred as the sample after 
removing the initial iterations (produced during the burn-
in period) and considering the appropriate lag. 
 The Bayes estimates of ( ) , ,d a b l= , under squared 

error loss function(SELF), are given by 

 ( ) ( ) ( )

1 1 1
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5.    Data 
 The following real data set is considered for illustration 
of the proposed methodology. The data extracted from 
Nichols and Padgett (2006), gives 100 observations on 
breaking stress of carbon fibres (in Gba)  

0.39, 0.81, 0.85, 0.98, 1.08, 1.12, 1.17, 1.18, 1.22, 1.25, 
1.36, 1.41, 1.47, 1.57, 1.57, 1.59, 1.59, 1.61, 1.61, 1.69, 
1.69, 1.71, 1.73, 1.80, 1.84, 1.84, 1.87, 1.89, 1.92, 2.00, 
2.03, 2.03, 2.05, 2.12, 2.17, 2.17, 2.17, 2.35, 2.38, 2.41, 
2.43, 2.48, 2.48, 2.50, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 
2.73, 2.74, 2.76, 2.77, 2.79, 2.81, 2.81, 2.82, 2.83, 2.85, 
2.87, 2.88, 2.93, 2.95, 2.96, 2.97, 2.97, 3.09, 3.11, 3.11, 
3.15, 3.15, 3.19, 3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 
3.33, 3.39, 3.39, 3.51, 3.56, 3.60, 3.65, 3.68, 3.68, 3.68, 

          3.70, 3.75, 4.20, 4.38, 4.42, 4.70, 4.90, 4.91, 5.08, 5.56 
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5.1. Computation of MLE and Model Validation  
   The estimation of the parameter of proposed model 
is obtained by the method of maximum likelihood(ML) 
estimation. The maximum likelihood estimates (MLEs) 
are obtained by direct maximization of the log-likelihood 
function ( , , )a b l�  given in (7). The advantage of this 
procedure is that it runs immediately using existing 
statistical packages such as R software (R Development 
Core Team, 2013). We consider the quasi Newton-
Raphson algorithm in R (Rizzo, 2008) to compute the 
MLEs.   
 The Table 1 shows the ML estimates, standard 
error(SE)  and   95 % Confidence Intervals for parameters 

, anda b l . The maximized value of loglikelihood is 
ˆ ˆˆ( , , ) -141.332a b l =� . The Akaike information criterion 

(AIC) and Bayesian information criterion(BIC) can be 
used to determine which model is most appropriate for 
the given data. For the given set AIC=288.664 and 
BIC=296.480. 

 

Table 1: MLE, standard error and 95% confidence interval (CI) 

Parameter MLE  Std. Error  95% CI  

alpha 1.3169 0.5976 (0.1456, 2.4882) 

beta 2.4091 0.6060 (1.2213, 3.5969) 

lambda 0.0928 0.0320 (0.0301, 0.1555) 
 

 To check the validity of the model we compute the 
Kolmogorov-Smirnov (KS) distance between the 
empirical distribution function and the fitted distribution 
function when the parameters are obtained by method of 
maximum likelihood is 0.0644 and the corresponding p-
value is 0.8008.   

 
Figure 4:  The graph of empirical and fitted distribution function 

 

 The high p-value suggests that fit is satisfactory. We 
have plotted the empirical distribution function and the 
fitted distribution function in Figure 4. The P–P and Q–Q 
plots for the fitted model are shown in Figure 5 and 
Figure 6.  It can be seen that the fitted exponentiated 
Weibull distribution provides good �t to the given data.  

 

 
Figure 5: Probability-Probability(P-P) plot using MLEs as estimate 
 

 
Figure 6: Quantile-Quantile(Q-Q) plot using  MLEs as 

estimate. 
   

6.  Bayesian Analysis 
  OpenBUGS script for the Bayesian analysis  

 

model 
{ 
 for( i in 1 : N ) 
 { 
 x[i] ~ dexpo.weib3_T(alpha, beta, lambda)  
 f[i] <- density(x[i], x[i]) 
 reliability[i] <- R(x[i], x[i]) 
 } 
# Prior distributions of the model parameters 
 alpha ~ dgamma(0.001, 0.001) 
 beta ~ dgamma(0.001, 0.001) 
 lambda ~ dunif(0.0, 1.0) 
} 
Data 
 list(N=100, c(0.39,...,5.56)) 

 Initial values  
 list(alpha=5.0, beta= 0.1, lambda=0.1)    # Chain 1 
 list(alpha=10.0, beta=0.5, lambda=0.5)   # Chain 2 

  

We assume the independent gamma priors for 
( )1 1~ ,  G a ba , ( )2 2~ ,  G a bb  and uniform prior for 

( )3 3,  ~ U a bl  with hyper-parameter values( 0.001,1a =  
0.001)1b = , ( 0.001, 0.001)2 2a b= = and

( 0.0, 1.0)3 3a b= = We run the model to generate two 
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Markov chains at the length of 40,000 with different 
starting points of the parameters. We have chosen initial 
values ( )5.0, 0.1, 0.1a b l= = =  for the first chain and 

( )10.0, 0.5, 0.5a b l= = =  for the second chain. The 
convergence is monitored using trace and ergodic mean 
plots. We find that the Markov Chains converge together 
after approximately 2000 observations. Therefore, burnin 
of 5000 samples is more than enough to erase the effect 
of starting point(initial values). Finally, samples of size 
7000 are formed from the posterior by picking up equally 
spaced every fifth outcome (to minimize the auto 
correlation among the generated deviates.), i.e. thin=5, 
starting from 5001.  
 Therefore, we have the posterior sample 

( )( ) ( ) ( )
1 1 1, , ; 1, ,7000j j j ja b l = �  from chain 1 and 

( )( ) ( ) ( )
2 2 2, , ; 1, ,7000j j j ja b l = �  from chain 2.  

 We have considered the chain 1 for analysis as well as 
for convergence diagnostic plots, the chain 2 produces the 
similar result. 
 

6.1   Convergence diagnostics 
 Before examining the parameter estimates or 
performing other inference, the good practice consists in 
monitoring the convergence that is to check whether the 
simulated sample provides a reasonable approximation 
for the posterior density. Fundamental graphical 
diagnostics are the trace and the ergodic mean plots. The 
trace plot is obtained by plotting simulated draws against 
the iteration number: a plot exhibiting the same behaviour 
through iterations after an initial period is an indication of 
convergence. The sequential plot of parameters is the plot 
that most often exhibits difficulties in the Markov chain. 
Figure 7(left panel) shows the sequential realizations of 
the parameters of the model. In this case Markov chain 
seems to be mixing well enough and is likely to be 
sampling from the stationary distribution.  
 

 

 

 
Figure 7: The trace plot (left panel) and the ergodic mean 

plot(right panel) for alpha, beta and lambda. 
 

 The erogdic mean is computed as the mean of all 
sampled values up to and including that at a given 
iteration. The convergence pattern based on ergodic 
averages is shown in Figure 7 (right panel) indicating the 
convergence of the chain. 
6.2   Posterior analysis 
6.2.1  Numerical summary  
 The numerical summary is presented for 

( )( ) ( ) ( )
1 1 1, , ; 1, ,7000j j j ja b l = �  from chain 1.  

We have considered various quantities of interest and 
their numerical values based on MCMC sample of 
posterior characteristics for exponentiated Weibull 
distribution.  The MCMC results of the posterior mean, 
mode, standard deviation(SD), five point summary 
statistics (minimum, first quartile, median, third quartile  
and maximum),  2.5th percentile,  97.5th percentile, 
skewness, 95% symmetric and HPD credible intervals of 
the parameters , anda b l are displayed in Table 2  
 

Table 2: Numerical summaries based on MCMC  sample of 
posterior  characteristics 

Characteristics alpha beta lambda 
Mean 2.0537 2.0042 0.2325 
Standard  Deviation 0.8798 0.4573 0.1623 
Minimum 0.4175 0.9804 0.0029 
2.5th Percentile(P2.5) 0.8328 1.2287 0.0309 
First Quartile (Q1) 1.4235 1.6863 0.1168 
Median 1.8850 1.9550 0.1952 
Third Quartile (Q3) 2.4730 2.2628 0.3040 
97.5th Percentile(P97.5) 4.3743 3.0623 0.6695 
Maximum 5.1710 3.6750 0.9739 
Mode 1.5992 1.9220 0.1490 
Skewness 1.0677 0.6317 1.3700   

 Highest probability density (HPD) :  A special type of 
Bayesian interval is the highest posterior density (HPD) 
interval. It is built so as to include the values of the 
parameters that have the highest posterior probability (the 
most likely values). When the posterior is symmetric and 
has a single peak (is unimodal), credible and HPD 
intervals coincide. With very skewed posterior 
distributions, however, the two intervals look very 
different. Table 3 shows the HPD and credible intervals 
for parameters alpha, beta and lambda.We have used the 
algorithm described by Chen and Shao (1999) to compute 
the HPD intervals under the assumption of unimodal 
marginal posterior distribution. 
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Table 3: HPD and Credible intervals 
Parameter Credible Interval  HPD Credible Interval  

alpha (0.8328, 4.3743) (0.6277, 3.9310) 
beta (1.2287, 3.0623) (1.1670, 2.9140) 

lambda (0.0309, 0.6695) (0.0083, 0.5727) 
6.2.2 Visual summary 
 The visual graphs include the boxplot, density strip 
plot, histogram, marginal posterior density estimate and 
rug plots for the parameters. We have also superimposed 
the 95% HPD intervals.  
 

 
Figure 8(a):   Histogram, marinal posterior density and 95% HPD 

interval 
 

  These graphs provide almost complete picture of the 
posterior uncertainty about the parameters. We have used 

the posterior sample ( )( ) ( ) ( )
1 1 1, ,j j ja b l ; 1, ,7000j = �  to 

draw these graphs. 
 

 
Figure 8(b):   Boxplot and density strip of a ,  based on posterior 

sample. 
 

 The density strip plot introduced by Jackson (2008) for 
a univariate distribution as a shaded rectangular strip, 
whose darkness at a point is proportional to the 
probability density.  
   

  
Figure 9(a):   Histogram, marinal posterior density and 95% HPD 

based on posterior sample 
 Histograms are the most popular non-parametric 
method to estimate the density function. It can provide 
insights on skewness, behaviour in the tails, presence of 
multi-modal behaviour, and data outliers. It may be useful 
to compare the fundamental shapes associated with 
standard analytic distributions. 
 

 
Figure 9(b):   Boxplot and density strip of beta 

  

 The kernel density estimates have been drawn using R 
software with the assumption of Gaussian kernel and 
properly chosen values of the bandwidths. It can be seen 
that b  is symmetric whereas a � and l  show positive 
skewness.  
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Figure 10(a):   Histogram, marinal posterior density and 95% HPD 
interval based on posterior sample 

 

 Figure 8(a) represents the histogram, marginal 
posterior density and 95% HPD interval for a  and 
boxplot and the density strip plot are displayed in Figure 
8(b).  We have plotted the similar graphs in Figure 9(a) 
and (b) for b .  The plots for  l  are shown in Figure 
10(a)  and Figure 10(b). 

 
 

Figure 10(b):  Boxplot and density strip of l  
 

6.2.3 Comparison with MLE 
 For the comparison with MLE we have plotted three 
graphs. In Figure 11 the density functions ˆ ˆˆ( ; , , )f x a b l
using MLEs and Bayesian estimates, computed via 
MCMC samples under gamma priors for a  and b  and 
uniform prior for l , are plotted. 
 

 
 

Figure 11:  The density functions using MLEs and Bayesian 
estimates, computed via MCMC 

  

 We observe in the Figure 11, the MLEs and the Bayes 
estimates are quite close and fit the data very well.  

A further support for this finding can be obtained by 
inspecting the Figure 12. In Figure 12 we have plotted 

th th th2.5 , 50 and 97.5 quantiles of the estimated density, it 
can be considered as evaluation of model fit, based on 
posterior sample,  

   ( )( ) ( ) ( )
1 1 1, , ; 1, ,7000j j j ja b l = � .  

 We have computed the density function at each 
observed data point for 7000 posterior samples, using 
logical function density( ) in OpenBUGS 

 ( )( ) ( ) ( )
1 1 1; , , ; 1, ,7000 ; 1, ,100j j j

if x j ia b l = =� � . 

The density corresponding to MLE has been plotted 
using the “plug-in” estimates of the parameters. It shows 
that we have a fairly good model for the given data set. 

 
 

 
Figure 12: Density estimates 

 

6.2.4 Estimation of reliability function 
 In this section, our main aim is to demonstrate the 
effectiveness of proposed methodology. For this, we have 
estimated the reliability function using posterior samples. 
Since we have an effective MCMC technique, we can 
estimate any function of the parameters. We have used 
the Kaplan-Meier estimate of the reliability function to 
make the comparison more meaningful. The Figure 13, 
exhibits the estimated reliability function (dashed blue 
line: 2.5th and 97.5th quantiles; solid red line:50th  
quantile) using Bayes estimate based on MCMC output 
and the empirical reliability function (black solid line). 
The Figure 13 shows that reliability estimate based on 
MCMC is very close to the empirical reliability estimates.  
 

  
Figure 13: Reliability function estimate using MCMC and Kaplan-

Meier estimate 
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6.2.5 Estimation of Hazard and Reliability  
 The posterior samples may be used to completely 
summarize the posterior uncertainty about the parameters 

, anda b l through a kernel estimate of the posterior 
distribution.  

 
Figure 14(a):   Visual summary of reliability function at 

t=1.36 
 

 
Figure 14(b) Visual summary of hazard function at   t=1.36 

 

 This is also true of any function of the parameters e.g. 
reliability and hazard functions. Suppose we wish to give 
point and interval estimates for reliability and hazard 
functions at the mission time t=1.36 (at the 11th observed 
data point). We have computed the hazard and reliability 
functions at mission time t=1.36 (at the 11th observed data 
point) for 6000 posterior samples, using logical function 
hrf() and reliability( ), (Kumar et al. 2011) in 
OpenBUGS. It can be computed directly using hazard and 
reliability functions given in (4) and (3), respectively. 
 

( )( ) ( ) ( )
1 1 11.36; , , ; 1, ,6000j j jh x ja b l= = �   and  

     ( )( ) ( ) ( )
1 1 11.36; , , ; 1, ,6000j j jR x ja b l= = � . 

  
 The histogram and marginal posterior density of the 
reliability and hazard functions are shown in Figure 14(a) 
and  Figure 14(b) respectively based on samples of size 

6000. The Gaussian kernel has been used for kernel 
density estimates.  
 It is evident from Figure 15 the estimates that the 
marginal distribution of reliability is negatively skewed 
whereas hazard is positively skewed.  
 The MCMC results of the posterior mean, mode, 
standard deviation(SD), five point summary statistics 
(minimum, first quartile, median, third quartile  and 
maximum),  2.5th percentile,  97.5th percentile, skewness, 
95% symmetric and HPD credible intervals(CI) of 
reliability and hazard functions are displayed in Table 4.   
  

Table 4: Posterior summary for Reliability and Hazard functions at 
t=1.36 

Characteristics Reliability Hazard 
Mean 0.8959 0.2596 
Standard  Deviation 0.0249 0.0439 
Minimum 0.7879 0.1328 
2.5th Percentile(P2.5) 0.8414 0.1801 
First Quartile (Q1) 0.8805 0.2288 
Median 0.8977 0.2572 
Third Quartile (Q3) 0.9134 0.2873 
97.5th 
Percentile(P97.5) 

0.9386 0.3525 

Maximum 0.9624 0.4453 
Mode 0.9055 0.2527 
Skewness -0.4942 0.3743 

95% CI (0.8414, 0.9386)  
(0.1800, 
0.3525)  

95% HPD CI (0.846, 0.9413)  
(0.1741, 
0.3455)  

 

 The ML estimates of reliability and hazard function at 
t=1.36 are computed using invariance property of the 
MLE.  ML estimates ˆ( 1.36) 0.2405h t = =  and 
ˆ( 1.36) 0.8978R t = = . 

 A trace plot is a plot of the iteration number against the 
value of the draw of the parameter at each iteration. 
Figure 15 display 6000 chain values for the hazard 

1.36( )h t =  and reliability 1.36( )R t = functions, with their 
sample median and 90% credible intervals. 
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Figure 15: MCMC output of R(t = 1.36) and h(t = 1.36). Dashed 

line(...) represents the posterior median and solid lines(-) represent 
lower and upper bounds of 90% probability intervals (HPD) 

 

7.   Posterior predictive analysis 
 One of the best and most flexible approaches to 
examining model fit is the use of posterior predictive 
distributions, (Gelman 2003) and (Gelman et al. 2004). 
The posterior predictive distribution for a model is the 
distribution of future observations that could arise from 
the model under consideration. The posterior predictive 
distribution takes into account both (1) parametric 
uncertainty and (2) sampling uncertainty from the original 
model. Parametric uncertainty is captured via the 
posterior distribution for the parameters, a sample of 
which is the result of simulation using MCMC methods, 
(Gupta et al. 2008). Sampling uncertainty is captured via 
the specification of the sampling density for the data. 
Thus, we can simulate data from the posterior predictive 
distribution, compare it with the observed data, and, if the 
simulated data are similar to the observed data, we may 
conclude the model fits well, (Gelman et al. 1996). To 
evaluate the fit of the posterior distribution of a Bayesian 
model, we can compare the observed data to the posterior 
predictive distribution. Gelman et al. (1996) propose a 
diagnostic procedure known as a posterior predictive 
checking using predictive replicates. Various forms of 
checking function may be calculated for both new data 
and actual observations to assess whether the model 
satisfactorily reproduces certain important aspects of the 
actual data. Thus such checks go beyond bias and 
precision. Implementation of posterior predictive 
simulation is relatively simple, given an MCMC-
generated sample of size 1000 from the posterior 
distribution for the parameters in a model ( , , )d a b l= , 
and can often be incorporated as part of the MCMC 
algorithm itself. For each value of d simulated from the 
posterior, we generate a new observation from the 
sampling distribution for the data, using that parameter 
value, for every original observation in the sample. Thus, 
we have 

 rep
ix ; 1, ,100i = �  for each( )( ) ( ) ( )

1 1 1, ,j j ja b l  

1, ,1000j = �  

 In fact, we have predicated the entire data set and we 
have 1000 replications of each ; 1, ,100ix i = � . 
 We view the model-checking as a comparison of the 
data with the replicated data given by the model, which 
includes exploratory graphics. In fact statistical graphics 
provides implicit or explicit model checks. Figure 16 
represents the  Q-Q plot of predicted quantiles vs. 
observed quantiles.  We, therefore, conclude that the EW 
distribution is compatible with the given data set. 
 

 
Figure 16: Q-Q plot of predictive quantiles versus empirical 

quantiles 
 

 To obtain further clarity on our conclusion for the 
study of model compatibility, we have considered 
plotting of density estimates of smallest, largest and 11th 
smallest i.e.( )(1) (100) (11), andX X X  replicated future 

observations from the model with superimposed 
corresponding observed data. For this purpose, 1000 
samples have been drawn from the posterior using 
MCMC procedure and then obtained predictive samples 
from the model under consideration using each simulated 
posterior sample.  
 

 
Figure 17:  Posterior predictive density of (11)X , vertical line 

represents corresponding observed value 
  

 The posterior predictive density estimates based on 
replicated future data sets are shown in Figure 17 and Figure 
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18. Figure 18 represents the estimates corresponding to 
smallest and largest predictive observations, whereas the 
same for 11th smallest observations is shown in Figure 17. 
The corresponding observed values are also shown by means 
of vertical lines. As the Figures 17 and 18 show, the 
posterior predictive distributions are centered over the 
observed values, which indicate good fit. In general, the 
distribution of replicated data appears to match that of the 
observed data fairly well. 
    

 
 

�
Figure 18: Posterior predictive distribution of the smallest( )(1)X  

and largest ( )(100)X ,  vertical lines represent corresponding 

observed values  

 The MCMC results of the posterior mean, median, 
mode for( )(1) (2) (5) (6) (11) (98), (99) (100), , , , , andX X X X X X X X   

are displayed in Table 5. 
  

Table 5: Posterior characteristics 
 Observed Mode Mean Median 

X(1)    0.39 0.58 0.56 0.65 
X(2)    0.81 0.78 0.76 0.85 
X(5)    1.08 1.08 1.05 1.13 
X(6)    1.12 1.15 1.12 1.19 
X(11)   1.36 1.40 1.37 1.44 
X(98)   4.91 4.81 4.94 5.13 
X(99)   5.08 5.05 5.24 5.46 
X(100)   5.56 5.60 5.84 6.14 

  

Figure 19 exhibits graphical posterior predictive check 
of the model adequacy, solid line(   ) represents the 

posterior median and dashed lines(...) represent lower and 
upper bounds of 95% probability intervals, observed data 
is superimposed. The predictive data reflect the expected 
observations after replicating the experiment in future, 
having already observed x and assuming that the adopted 
model is true. Overall, the results of the posterior 
predictive simulation indicate that model fits these data 
particularly well. Model fit assessments based on 
posterior predictive checks are somewhat too liberal, and 
posterior predictive checks should not be used for model 
selection, see  Ntzoufras (2009). 

  

 
Figure 19: Graph of Model fit 

 

8. Conclusion 
 The MCMC procedure provides a flexible environment 
for fitting a wide range of models. The MCMC sample 
completely summarizes posterior distribution about the 
parameters. We have used exploratory data analysis 
techniques for the posterior analysis. We have shown that 
it is true for any function of the parameters such as hazard 
function, reliability etc. We have obtained the probability 
intervals for parameters, hazard and reliability functions. 
We have presented the model compatibility via the 
posterior predictive check method.  We have applied the 
developed techniques on a real data set. Therefore, 
MCMC procedure can easily be applied for Bayesian 
estimation and prediction related to exponentiated 
Weibull model. 
 

References 
1. Chen, M. H., Shao, Q. M., “Monte Carlo estimation of 

Bayesian credible intervals and HPD intervals,” Journal 
of Computational and Graphical Statistics, 8(1), 69-92, 
(1999). 

2. Choudhury, A., “A. Simple Derivation of Moments of the 
Exponentiated Weibull Distribution,” Metrika, 62, 17–22, 
(2005). 

3. Gelfand, A.E., Smith, A.F.M., “Sampling based approach 
to calculating marginal densities,” Journal of the 
American Statistical Association, 85, 398–409. (1990). 



Shankar Kumar Shrestha, Vijay Kumar 

International Journal of Statistiika and Mathematika, ISSN: 2277- 2790 E-ISSN: 2249-8605, Volume 7 Issue 2                                                 � �������  

4. Gelman, A., “A Bayesian Formulation of Exploratory 
Data Analysis and Goodness-of-fit Testing,” 
International Statistical Review, 71(2), 369-382, (2003).   

5. Gelman, A., Carlin, J., Stern, H., Rubin, D. “Bayesian 
Data Analysis,” Second Edition, London,  Chapman & 
Hall, (2004). 

6. Gelman, A., Meng, X.L., Stern, H.S., “Posterior 
predictive assessment of model fitness via realized 
discrepancies,” Stat. Sin., 6, 733–807, (1996). 

7. Gupta, A., Mukherjee, B., Upadhyay, S.K., “A Bayes 
study using Markov Chain Monte Carlo simulation,” 
Reliability Engineering & System Safety, 93, 1434-1443, 
(2008). 

8. Hastings, W. K., “Monte Carlo sampling methods using 
Markov chains and their applications,” Biometrika, 57, 
97 –109, (1970). 

9. Jackson, C.H., “Displaying uncertainty with shading,” 
The American Statistician, 62(4), 340-347, (2008).   

10. Jaheen, Z.F., Al Harbi, M.M., “Bayesian estimation for 
the exponentiated Weibull model via Markov Chain 
Monte Carlo simulation,” Commun. Stat. Simul. 
Comput., 40, 532-543, (2011). 

11. Jiang, R., Murthy, D.N.P., “Exponentiated Weibull 
family: A graphical approach,” IEEE Transactions on 
Reliability, 48(1), 68–72, (1999). 

12. Kim, C., Jung, J., Chung, Y., “Bayesian estimation for 
the exponentiated Weibull model under Type II 
progressive censoring,” Statistical Papers, 52, 53-70, 
(2011). 

13. Kumar, V., Ligges, U., “reliaR : A package for some 
probability distributions,” http://cran.r-
project.org/web/packages/reliaR/index.html, (2011). 

14. Kumar, V., Ligges, U., Thomas, A., “ReliaBUGS User 
Manual : A subsystem in OpenBUGS for some statistical 
models,” Ver. 1.0, OpenBUGS 3.2.1, 
http://openbugs.info/w/downloads, (2010). 

15. Lunn, D.J., Jackson, C., Best, N., Andrew, A., 
Spiegelhalter, D., “The BUGS Book :A Practical 
Introduction to Bayesian Analysis,” Chapman & 
Hall/CRC, London, UK, (2013). 

16. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., 
Teller, A.H., Teller, E., “Equations of state calculations 
by fast computing machines,” Journal Chemical Physics, 
21, 1087–1091, (1953). 

17. Mudholkar, G.S., Srivastava, D.K.,  “Exponentiated 
Weibull family for analyzing bathtub failure-rate data,” 
IEEE Transactions on Reliability, 42(2), 299–302, 
(1993). 

18. Mudholkar, G.S., Hutson, A.D., “The exponentiated 
Weibull family: some properties and a flood data 
application,” Communications in Statistics - Theory and 
Methods, 25(12), 3059-3083, (1996). 

19. Mudholkar, G.S., Srivastava, D.K., Freimer, M., “The 
exponentiated Weibull family—a reanalysis of the bus-
motor-failure data,” Technometrics, 37(4), 436 – 445, 
(1995). 

20. Murthy, D.N.P., Xie, M., Jiang, R., “Weibull Models,”  
Wiley, New York, (2004). 

21. Nadarajah, S., Kotz, S., “The exponentiated type 
distributions,” Acta Applicandae Mathematicae, 92, 97-
111, (2006). 

22. Nadarajah, S.,Cordeiro, G.M., Edwin M. M. Ortega, 
E.M.M., “The exponentiated Weibull distribution: a 
survey,” Statistical Papers, DOI 10.1007/s00362-012-
0466-x, (2012). 

23. Nassar, M.M., Eissa, F. H., “Bayesian Estimation for the 
Exponentiated Weibull Model,” Communications in 
Statistics - Theory and Methods, 33(10), 2343 –2362, 
(2004). 

24. Nassar, M.M., Eissa, F. H., “On the Exponentiated 
Weibull Distribution,” Communications in Statistics - 
Theory and Methods, 32(7), 1317 –1336, (2003). 

25. Nichols, M.D., Padgett, W.J., “A bootstrap control chart 
for Weibull percentiles,” Quality and Reliability 
Engineering International, 22, 141-151, (2006). 

26. Ntzoufras, I., “Bayesian Modeling using WinBUGS,” 
John Wiley & Sons, New York, (2009). 

27. Pal, M., Ali, M.M.,Woo, J., “Exponentiated Weibull 
Distribution,” Statistica, LXVI, no. 2, 139-147, (2006). 

28. Pham, H., Lai, C.D., “On recent generalizations of the 
Weibull distribution,” IEEE Transactions on Reliability, 
56 (1), 454-458, (2007). 

29. R Development Core Team, “R: A language and 
environment for statistical computing,” R Foundation for 
Statistical Computing, Vienna, Austria,  (2013). 

30. Rinne, H., “The Weibull Distribution: A Handbook,” 
CRC Press, London, (2009). 

31. Rizzo, M. L., “Statistical computing with R,” Chapman 
& Hall/CRC, (2008).   

32. Singh,U., Gupta, P.K., Upadhyay, S.K., “Estimation of 
three- parameter exponentiated-Weibull distribution 
under type-II censoring,” Journal of Statistical Planning 
and Inference, vol. 134, 350-372, (2005a). 

33. Singh,U., Gupta, P.K., Upadhyay, S.K., “Estimation of 
parameters for exponentiated-Weibull family under type-
II censoring scheme,” Computational Statistics and Data 
Analysis, 48, 509 – 523, (2005b). 

34. Thomas, A., O’Hara, B., Ligges, U. and Sturtz, S., 
“Making BUGS Open,” R News, 6, 12–17, URL 
http://mathstat.helsinki.fi/openbugs/, (2006). 

35. Thomas,A., “OpenBUGS Developer Manual,” version 
3.1.2,  http://www.openbugs.info/, (2010).   


