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Research Article 
 

Abstract: Here, we consider a one dimensionalnonlinear cubic map 

to find out a few inherent attributes i.e.fixed points, periodic points, 

bifurcation values of periods2�, � = 0,1,2,3,4 … … … … … . ...We use 

suitable numerical methods and have shown how the period 

doubling bifurcation points ultimately converge to the Feigenbaum 

constant. We have calculated Feigenbaum   �value also. We have 

further verified our findings with the help of bifurcation diagram, 

Lyapunavexponent, time series analysis of the map. Computer 

software package ‘Mathematica’ and ‘C-program’   are used 

prudentially to implement numerical algorithms for our purpose. 
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1. Introduction 
 The nonlinear dynamics of physical systems are analyzed 

by obtaining discrete models. Mathematically, models are 

represented by maps. Maps arise in various ways. The 

ways are-------- 

i) As tools from analyzing differential equations. 

 ii) As models of natural phenomenon. 

 iii) As simple examples of chaos.  

Maps are capable of more varied behavior than 

differential equations because the points jump 

discontinuously along their orbits rather than flow 

continuously. [5] 

 In this paper, we have considered the modelf�x� = x +
µx�1 − x�� where � ∈ �0, 1� and  µ ∈ �0 ,2� is an 

adjustable parameter. Here a detailed analysis of period 

doubling bifurcation of model has been discussed.  Here 

we shall also study some associated universalities, 

particularly the route from order to chaos, as developed 

by Mitchel’s J Feigenbaum an American physicist. 

 Secondly, we have determined the accumulation 

point and draw the bifurcation graph of the model and 

verify that chaos occur beyond accumulation point. 

 Thirdly, the graph of Lyapuonv exponent 

confirms about existence of chaotic region.  

              Fourthly, the graphs of time series analysis are 

confirmed in order to support our periodic orbits of 

periods 2�, 2�, 2�……… [6, 7, 8] 
 

2. Fixed point:-[7, 8] 
 Let �be a topological space and f: X → X be a 

map. A real number x∗is called a fixed point of the 

function f iff�x∗� = x∗. Our model is f�x� = x +
µx�1 − x�� where x ∈ �0,1� and  µ ∈ �0,2�. Clearly the 

solution f�x∗� = x∗gives the fixed point of f. A fixed 

point x∗is said to be a  

i) Stable fixed point or attractor if f /�x∗� < 1. 

ii) Unstable fixed point or repelled if f /�x∗� > 1. 

iii) Super attractive or super stable if f /�x∗� = 0. 

 The physical significance of a ‘fixed point’ is 

that it can be thought as an ‘equilibrium point'. [16] 
 

3. Periodic point and Periodic orbit 
         Let Xb e a topological space and x ∈ X. For 

any m ∈ Z&, we say � is a periodic point orperiod m 

point if f -�x� = xandf .�x� ≠ x  for  j = 1,2,3 … … … … . �m − 1�. 

Underthis circumstance the orbit of � is called a periodic 

orbit or period m orbit. Also we say that 1 is 

the period of the periodic point or periodic orbit. 
Note: A fixed point can be included under this definition so 

periodic points of period one. Conversely, a periodic point of 

period 1of a map f can be viewed as the fixed point(s) of 

mth  degree iteration of themap. 
 

4. Bifurcation& Bifurcation point[17] 
Fixed points can be created or destroyed, or their stability 

can be changed. These qualitative changes in the dynamic 

are called bifurcations & the parameter values at which 

they occur are called bifurcation points. 
 

5.Chaos[10] 
Chaos is the term used to describe the apparently complex 

behavior of what we consider to be sample, well behaved 

systems. Chaotic behavior, when we looked at casually, 

looks erratic and almost random--almost like the behavior 

of a system strongly influenced by outside, random 

‘noise’ or complicated behavior of a system with many, 

many degrees of freedom, each ‘doing its own thing”  
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Also, some sudden and dramatic changes in nonlinear 

systems may give rise to the complex behavior called 

chaos. The noun chaos and adjective chaotic are used to 

describe the time behavior of a system. When that 

behavior is a periodic (it never exactly repeats) and is 

apparently random or hoist. 
 

6. Our Study on ourmodel 
a)Finding maximum value of f(x) and its range:  

In our model, atx = +4�&µ
5µ   ,6���is maximum as 

6∕∕��� < 0for 8 > 0 and at this point maximum value 

for6��� is
���&µ�9:

5;5µ . Again if take 8 = 2, then we get f�x� 

is maximum at   � = �
√�and this maximum value is1.414 

as x > 0 . Hence the range may be taken as�0, 1.414� . 
b) Finding fixed points & our interest: 

Solving   f�x� = x, we get x = −1, 0, 1 

Therefore, the fixed points   are−1, 0, 1and out of all 

these points our interesting points are 0,1 asx ∈ �0,1�  . 
c) Finding the first bifurcation point: 

By stability criterion, we   know that the fixedpoint 

� = �∗ is stable one if f /�x� =>=∗ < 1, otherwise 

unstable.In case of our model,  f ∕�x� = 1 + µ− 3µx�   

and   f /�x� =>� = 1 + µ > 1 for µ > 0 , thereforex = 0 is 

an unstable fixed point.Again  f /�x� =>� = 1 − 2µ.This 

absolutevalue remains less than 1 for0 < 8 < 1and 

greater than 1 for µ > 1.Therefore, the fixed point � =
1 is astable oneforµ ∈ �0 , 1�and unstable onewhen µ >
1.Hence µ = 1 is the first bifurcationpointof our model 

and theintersection points off�x� = x + µx�1 − x��and   

f�x� = xgive the fixed points of f. 

 ?@ABC D. E: Graphs of f�x� = x + µx�1 − x��andf�x� = x at the 

parameter µ = 1.000000000. 
 

(d) Finding the 2
nd

 bifurcation point and theothers:- 

For the second bifurcation point we consider 

theiterated map f ��x�and the fixed pointsof it are given 

by solving the equationf ��x� = x, which is a ninth degree 

equation, so give nine roots. 

 
Figure 6.2 Graph of f ��x�and f�x� = x at the parameter µ =

1.236067977499789580and their intersection gives four fixed 

points off�x�. 
 

With the help of C-programming and using Newton-

Rapson method we get the second bifurcation point 

µ� = 1. 236067749978950and the corresponding 

periodic point is x = 0.707107 

                         By the same way we get the other   

bifurcation points andalso given one graph in this 

regard--------- 

 ?@ABKC D. L: Graph of f M�x�and f�x� = x at the parameter 

µ = 1.299227939650204000and their intersection gives the fixed 

points off M. 
 

7. Numerical algorithm to find periodic points, 

derivatives of different iterates of our map and 

the bifurcation points 

Newton-Recurrence formula is------ 

xN&� = xN  −  O�=P�
� Q

QRO�=P��    ,  n = 1,2,3,4 … ….    .With 

the help of this formula we can find out ourfixed 

points. 

Let the initial value of x be x�. Then 
f�x�� = x� + µx��1 − x��� = x��TUV� 

f ����� = f�x�� = x� + µ x��1 − x��� = x��TUV� 
Proceeding in this way we get the recurrence formula as 

follows--- 

xN = xNW� + µxNW��1 − xNW�� �     ,     n
= 1,2,3,4, … … … … …. 

Now, the derivative off X can be defined as follows---------

-- 

YZ[
Z=Y=>=\

= 1 + µ− 3µx��. And by chain rule of different 
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ion we get 

YZ[ :
Z= Y=>=\

= YZ[
Z=Y[�=\� YZ[

Z=Y=>=\
= �1 + µ− 3µx����1 + µ−

3µx���,      x� = f�x�� 

Proceeding   in this way we get 

YZ[ ]
Z= Y=>=\

= ^1 + µ − 3µxXW�� _^1 + µ − 3µxXW�� _ −
− − − − �1 + µ − 3µx��� . 

We  always  remember  that  the bifurcation value for the 

map f X where its derivative
Z[ ]
Z= atperiodic point is equal to    

−1  . Now it is given below a table of the bifurcation 

points and one of the fixed points(periodic points) at the 

corresponding bifurcation point and Feigenbaum delta 

value is 

δN = µN&� − µN
µN&� − µN&�

 

 

Numerical calculation of bifurcationpoints 

Bifurcation 

Points 

One of the 

periodic 

points 

Feigenbaum delta value 

( Experimental value) 

µ� = 1.0000000000000000 1.000000  

µ� = 1.2360679774997895 0.707107  

µ5 = 1.2880317544828430 0.609182 δ� = 4.542933894796883846 

µ
4

= 1.2992279396502040 0.587954 δ2 = 4.641203785601336114 

µ
5

= 1.3016289140370815 0.583623 δ3 = 4.663183925890289113 

µ
6

= 1.3021432715814591 0.583614 δ4 = 4.667809342385706860 

µ
7

= 1.3022534595730905 0.589555 δ5 = 4.667901748491901825 

µ
8

= 1.3022770594856267 0.589465 δ6 = 4.668030799697742375 

µ
9

= 1.3023275854537916 0.589471 δ7 = 4.669200000007389709 
 

From the above table we conclude that 

theFeigenbaumdelta converge to 4.669200- - -- -- -- and 

the following bifurcation diagram indicates the universal 

route to chaos for our model. 

:  
?@ABKC`. E: Bifurcation diagram off�x� = x + µx^1 − x2_ 

 

8. Accumulation point: [6, 7, 8] 
Since our model follows a period doublingbifurcation, 

therefore we can consider that aμNc   be the sequence 

ofbifurcation points.With the help of   Feigenbaum 

delta�δ�, if we know first�8��and second�8��bifurcation 

points, then wegetμ5     ≈ f:Wfg
h + μ� … … . . �i�     .  

Similarly we get  μM     ≈ f9Wf:
h + μ5 … … . . �ii�. 

From �i�, �ii� we get8M  ≈ �μ� − μ�� i�
h + �

h:j + μ�. If we 

go on this procedure to calculateμk , μl and so on, we just 

obtain more terms in the sum involving powers of i�
hj 

.We acknowledge this sum as a geometricseries and after 

simplification we obtain the result. [10] 

μm     ≈ fPngWfP
hW� + μN&� … … . . �iii�   .The expression (iii) is 

exact when the bifurcation ratioδN =  fPngWfP
fPn:WfPng

  is 

equal  ∀�and thenlimN→m δN = δ. Hence qμm,Nr is the 

sequence and limN→m μm ,,N = μm .Using the 

experimental bifurcation points the sequence of 

accumulation points qμm,Nrare calculated for  some values 

of  n  and the points  are  mentioned under in  this regard - 

--------- 
µ
∞,1 = 1.3026986339498275200266825839056  
µ
∞ ,2 = 1.3023027978088269696320324474978 

µ
∞ ,3  = 1.3023143477896453694687033731943 

µ
∞ ,4  = 1.3023250338560560565458354371655 

µ
∞,5 = 1.3231273214813591277213505816297 

µ
∞,l = 1.3023006776039619797951 50636487 

The above sequence converge to the value    1.3023 - - - -

- , which is the required accumulation point. 
 

9. Lyapunov Exponent 
The Lyapunov exponent is an experimental device. This 

device isstrong and efficacious. It has ability to separate 

unstable, chaotic behavior from that which is stable and 

predictable.With the help of it we can measure these 

properties also. All the chaotic systems definitely have 

the phenomenon of sensitive dependence on initial 

conditions (or perturbations of the orbit). Out of all 

signatures one of the signatures of chaos is the divergence 

of adjacent (nearby) trajectories. The adjacent trajectories 

diverge exponentially on strange attractors. Lyapunov 

exponent quantifies theexponentially divergence of two 

trajectories starting very close to each other. This 

exponent has two types……. 

(i) The first one is positive Lyapunov exponent. It 

indicates the exponential divergence of the 

trajectory which confirms chaos. 

(ii) The second isnegative Lyapunov exponent. This is 

associated with regular behavior (periodic orbit). 

[4] 

The Lyapunov exponent�L�computed using the derivative 

method is defined by  

L = limN→m �
N ^log ff   � �x�� + log ff   � �x�� + − − − −

 − + log ff   � �xN� _.Here     ff�represents differentiation 

with respect to� and��,��, �5, −  − − −, ��are successive 

iterates.[15] 

               In this paper, Lyapunov exponent is calculated, 

to verify how much accurate are the accumulation points. 
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?@ABKC u. E:  Graph of Lyapunov Exponent for parameter 

from 0  to  1.5 
 

From the graph of Lyapunov experiment, we see that 

some portions lie in the negative side of the parameter 

axis indicating regular behavior (periodic orbit) and the 

portions lie on the positive side of parameter axis confirm 

us about the assistance of chaos for a model. 
 

10.  Time series analysis[5] 
It is a type of plot. It is frequently used for visualization 

of the solution of one dimensional difference equation of 

the form x_(n+1)=f(x_n ),       n=0,1,2,3,4………..given 

by a map called the time series. It consists of a 

representation of the variable x_n as a function of n. 

Typically the horizontal axis representsn and the vertical 

axis represents x_n  In case of the map we have 

considered, the difference equation is given by 

x_(n+1)=x_n+µx_n (1-x_n^2 )  ,   n=0,1 ,2,3,4…… 

 
No of iterations → 

?@ABKC Ev. E: Time series graph showing period 1 behavior 

forµ = 0.99 

 

 
No of iterations → 

?@ABKC Ev. w:  Time series graph showing period 2 behavior 

for µ = 1.1 
 

 
No of iterations → 

?@ABKC Ev. L:  Time series graph showing period 4 behavior 

for µ = 1.24 

 
No of iterations → 

?@ABKC Ev. x:  Time series graph showing chaotic behavior 

for µ = 1.35 
 

The set forwards which the x values converge is called an 

attractor. The above figures show that an attractor may be 

a fixed point, a limit cycle (or a periodic attractor) or a 

chaotic attractor. In case of the map, we have considered, 

if we start with a value of µ less than 1, successive points 

‘flow’ to a fixed point at a non-zero value of �indicating 

period one behavior inFig 10.1. However, for values of µ 

slightly greater than 1 the fixed point ‘bifurcates’ to a 

‘limit cycle’ of period 2 in Fig 10.2. This then bifurcates 

again i.e. the period double at a larger value of � to a 

limit cycle with period 4 in Fig 10.3. As µ increase, the 

period continues to double at successively closer and 

closer value ofµuntil we have chaotic behavior 

in Fig 10.4. In case of the map we have considered,this is 

illustrated in the above figures with four values ofµ(µ =
0.99,period 1 fixed point), (µ = 1.1,period 2 limit cycle), 

(µ = 1.24, period 4  limit cycle) and (µ = 1.35,chaos). 
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