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Research Article

Abstract: Here, we consider a one dimensionalnonlinear cubic map
to find out a few inherent attributes i.e.fixed points, periodic points,
bifurcation values of periods2™,n = 0,1,2,34 ... ... ... ... ......We use
suitable numerical methods and have shown how the period
doubling bifurcation points ultimately converge to the Feigenbaum
constant. We have calculated Feigenbaum Jvalue also. We have
further verified our findings with the help of bifurcation diagram,
Lyapunavexponent, time series analysis of the map. Computer
software package ‘Mathematica’ and ‘C-program’ are used
prudentially to implement numerical algorithms for our purpose.
Keywords: Fixed points, Periodic points, Bifurcation points,
Feigenbaum constant, Lyapunov exponent, Time series.

1. Introduction
The nonlinear dynamics of physical systems are analyzed
by obtaining discrete models. Mathematically, models are
represented by maps. Maps arise in various ways. The
ways are--------
1) As tools from analyzing differential equations.

ii) As models of natural phenomenon.

iii) As simple examples of chaos.
Maps are capable of more varied behavior than
differential equations because the points jump
discontinuously along their orbits rather than flow
continuously. [5]
In this paper, we have considered the modelf(x) = x +
ux(1 —x%) wherex € [0,1] and p€]0,2] is an
adjustable parameter. Here a detailed analysis of period
doubling bifurcation of model has been discussed. Here
we shall also study some associated universalities,
particularly the route from order to chaos, as developed
by Mitchel’s J Feigenbaum an American physicist.

Secondly, we have determined the accumulation
point and draw the bifurcation graph of the model and
verify that chaos occur beyond accumulation point.

Thirdly, the graph of Lyapuonv exponent
confirms about existence of chaotic region.

Fourthly, the graphs of time series analysis are
confirmed in order to support our periodic orbits of
periods 2°9,21,22. ... ... [6,7, 8]

2. Fixed point:-[7, 8]

Let Xbe a topological space and f:X = X be a
map. A real number x*is called a fixed point of the
function f iff(x*) =x*. Our model is f(x) =x+
px(1 — x2) where x € [0,1] and p € ]0,2]. Clearly the
solution f(x*) = x*gives the fixed point of f. A fixed
point x*is said to be a
i) Stable fixed point or attractor if |f /x| < 1.

ii) Unstable fixed point or repelled if|f /(x*)| > 1.
iii) Super attractive or super stable if f/(x*) = 0.

The physical significance of a ‘fixed point’ is

that it can be thought as an ‘equilibrium point'. [16]

3. Periodic point and Periodic orbit

Let Xb e a topological space andx € X. For
anym € Z,, we say x is a periodic point orperiod m
point if f™(x) = xandfi(x) # x for j =1,2,3 e e eo. (m = 1).
Underthis circumstance the orbit of x is called a periodic
orbit or period morbit. Also we say that mis

the period of the periodic point or periodic orbit.

Note: A fixed point can be included under this definition so
periodic points of period one. Conversely, a periodic point of
period mof a map f can be viewed as the fixed point(s) of
mth degree iteration of themap.

4. Bifurcation& Bifurcation point[17]

Fixed points can be created or destroyed, or their stability
can be changed. These qualitative changes in the dynamic
are called bifurcations & the parameter values at which
they occur are called bifurcation points.

5.Chaos[10]

Chaos is the term used to describe the apparently complex
behavior of what we consider to be sample, well behaved
systems. Chaotic behavior, when we looked at casually,
looks erratic and almost random--almost like the behavior
of a system strongly influenced by outside, random
‘noise’ or complicated behavior of a system with many,
many degrees of freedom, each ‘doing its own thing”
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Also, some sudden and dramatic changes in nonlinear
systems may give rise to the complex behavior called
chaos. The noun chaos and adjective chaotic are used to
describe the time behavior of a system. When that
behavior is a periodic (it never exactly repeats) and is
apparently random or hoist.

6. Our Study on ourmodel
a)Finding maximum value of f(x) and its range:

f1+ ) )
In our model, atx = + 3—“ ,f (x)is maximum as
n

f//(x) < Ofor >0 and at this point maximum value
3

forf (x) is%. Again if take u = 2, then we get f(x)

. . 1 . . .
1S maximum at x = Eand this maximum value is1.414

as X > 0 . Hence the range may be taken as[0,1.414] .
b) Finding fixed points & our interest:

Solving f(x) = x, we getx = —1,0,1
Therefore, the fixed points are—1,0,1and out of all
these points our interesting points are 0,1 asx € [0,1] .
¢) Finding the first bifurcation point:
By stability criterion, we  know that the fixedpoint
x =x" is stable one if|f/(x)|x_x* <1, otherwise
unstable.In case of our model, f/(x) =1+ p— 3pux?
and |f/(x)|x_0 =1+p>1forpu> 0, thereforex = 0 is
an unstable fixed point.Again |f/ (x)|x_1 =1 — 2. This
absolutevalue remains less than 1 for0 < u < land
greater than 1 for p > 1.Therefore, the fixed point x =
1is astable oneforu € (0,1)and unstable onewhen p >
1.Hence p =1 is the first bifurcationpointof our model
and theintersection points off(x) = x + ux(1 — x?)and
f(x) = xgive the fixed points of f.
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Figue 6.1: Graphs of f(x) = x + ux(1 — x2)andf(x) = x at the
parameter p = 1.000000000.
(d) Finding the 2™ bifurcation point and theothers:-
For the second bifurcation point we consider
theiterated map f?(x)and the fixed pointsof it are given
by solving the equationf?(x) = x, which is a ninth degree
equation, so give nine roots.
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Figure 6.2 Graph of f2(x)and f(x) = x at the parameter © =
1.236067977499789580and their intersection gives four fixed
points off(x).

With the help of C-programming and using Newton-

Rapson method we get the second bifurcation point

p, = 1.236067749978950and  the  corresponding
periodic point is x = 0.707107

By the same way we get the other

bifurcation points andalso given one graph in this
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Figure 6.3: Graph of f*(x)and f(x) = x at the parameter
pn = 1.299227939650204000and their intersection gives the fixed
points off*,
7. Numerical algorithm to find periodic points,
derivatives of different iterates of our map and

the bifurcation points
Newton-Recurrence formula is------

Xnt1 = Xp — 2o n=1234..... With
[Eg(xn)]
the help of this formula we can find out ourfixed
points.

Let the initial value of x be x,. Then
f(%0) = Xo + 1xo(1 — x3) = x;(say)

f2(x0) = f(x1) = %y + px;(1 = x§) = x,(say)
Proceeding in this way we get the recurrence formula as
follows---

Xp = Xpop Fxpo(1=xF_4) , n

=1,2,34, e e e e

Now, the derivative off¥ can be defined as follows---------

df
dx

=1+ p—3px3. And by chain rule of different

X=Xo
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ion we get

dr? df df

— =|= — =Q+p-3uxHA+p-—
o N i O v N (I+p—-3px))(1+p
3uxg),  xq = f(xo)

Proceeding in this way we get

dfk

dx

X=Xp

L= (1+p-3pxi_)(1+p—3uxt_,) -

———=(1+p—3pxg) .

We always remember that the bifurcation value for the
. Lo dfk . o

map fX where its derlvatlvegatpenodlc point is equal to

—1 . Now it is given below a table of the bifurcation

points and one of the fixed points(periodic points) at the
corresponding bifurcation point and Feigenbaum delta

value is

8y =

Mor1 T Hy

Motz 7 Hoga

Numerical calculation of bifurcationpoints

Bifurcation One .Of Fhe Feigenbaum delta value
Points P er1'0d1C ( Experimental value)
points
p, = 1.0000000000000000 1.000000
u, = 1.2360679774997895 0.707107
p, = 1.2880317544828430 0.609182 8, = 4.542933894796883846
p, = 1.2992279396502040 0.587954 8, = 4.641203785601336114
ps = 1.3016289140370815 0.583623 3; = 4.663183925890289113
pe = 1.3021432715814591 0.583614 8, = 4.667809342385706860
p, = 1.3022534595730905 0.589555 35 = 4.667901748491901825
pg = 1.3022770594856267 0.589465 3 = 4.668030799697742375
u, = 1.3023275854537916 0.589471 8, = 4.669200000007389709
From the above table we conclude that

theFeigenbaumdelta converge to 4.669200- - -- -- -- and
the following bifurcation diagram indicates the universal
route to chaos for our model.
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Figure7.1: Bifurcation diagram off(x) = x + px(1 — x?)
8. Accumulation point: [6, 7, 8]

Since our model follows a period doublingbifurcation,
therefore we can consider that {u,} be the sequence
ofbifurcation points.With the help of Feigenbaum
delta(8), if we know first(u,)and second(u,)bifurcation

points, then wegetp; » ”2;”1 + Uy e e (1)

Similarly we get [, « “3;“2 + Uz wen e ().

o s 1,1
From (i), (ii) we getuy, =~ (uy — Hy) (3 + 8—2) + Uy If we
go on this procedure to calculateps, g and so on, we just
obtain more terms in the sum involving powers of (%)

.We acknowledge this sum as a geometricseries and after
simplification we obtain the result. [10]

Ho =~ % + Upgq « oe.. (iii) . The expression (iii) is
exact when the bifurcation ratiod, = MnriTln g
Hn+2~Hn+1

equal Vnand thenlim,_. 6, = 6. Hence {um‘n} is the
sequence and  limp,e Moo n = Mo  .Using  the
experimental bifurcation points the sequence of
accumulation points {um‘n}are calculated for some values
of n and the points are mentioned under in this regard -

Moy = 1.3026986339498275200266825839056

M, ,= 1.3023027978088269696320324474978

My 3 = 1.3023143477896453694687033731943

Mo 4 1.3023250338560560565458354371655

b, s = 1.3231273214813591277213505816297

um"s 1.3023006776039619797951 50636487
The above sequence converge to the value 1.3023 - - - -
-, which is the required accumulation point.

9. Lyapunov Exponent

The Lyapunov exponent is an experimental device. This
device isstrong and efficacious. It has ability to separate
unstable, chaotic behavior from that which is stable and
predictable.With the help of it we can measure these
properties also. All the chaotic systems definitely have
the phenomenon of sensitive dependence on initial
conditions (or perturbations of the orbit). Out of all
signatures one of the signatures of chaos is the divergence
of adjacent (nearby) trajectories. The adjacent trajectories
diverge exponentially on strange attractors. Lyapunov
exponent quantifies theexponentially divergence of two
trajectories starting very close to each other. This
exponent has two types.......

(i) The first one is positive Lyapunov exponent. It
indicates the exponential divergence of the
trajectory which confirms chaos.

(i) The second isnegative Lyapunov exponent. This is
associated with regular behavior (periodic orbit).
(4]

The Lyapunov exponent(L)computed using the derivative
method is defined by

L= limn_,m%(log|f& (X1)| + log|f& (X2)| +—- - — =
— + log|f} (x,)|).Here firepresents
with respect tox andx;,X,, X3, — — — —, Xpare successive
iterates.[15]

In this paper, Lyapunov exponent is calculated,
to verify how much accurate are the accumulation points.

differentiation
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Figure 9.1: Graph of Lyapunov Exponent for parameter
fromO0 to 1.5

From the graph of Lyapunov experiment, we see that
some portions lie in the negative side of the parameter
axis indicating regular behavior (periodic orbit) and the
portions lie on the positive side of parameter axis confirm
us about the assistance of chaos for a model.

10. Time series analysis[5]

It is a type of plot. It is frequently used for visualization
of the solution of one dimensional difference equation of
the form x_(n+1)=f(x_n ), n=0,1,2,34........... given
by a map called the time series. It consists of a
representation of the variable x_n as a function of n.
Typically the horizontal axis representsn and the vertical
axis represents x_n In case of the map we have
considered, the difference equation is given by
x_(n+1)=x_n+px_n (1-x_n"2 ) , n=0,1,2,34......
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Figure 10.1: Time series graph showing period / behavior
forp = 0.99
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Figure 10.2: Time series graph showing period 2 behavior
forp=1.1
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Figure 10.3: Time series graph showing period 4 behavior
forp =124
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Figure 10.4: Time series graph showing chaotic behavior
for p = 1.35

The set forwards which the x values converge is called an
attractor. The above figures show that an attractor may be
a fixed point, a limit cycle (or a periodic attractor) or a
chaotic attractor. In case of the map, we have considered,
if we start with a value of p less than 1, successive points
‘flow’ to a fixed point at a non-zero value of [lindicating
period one behavior inFig 10.1. However, for values of p
slightly greater than 1 the fixed point ‘bifurcates’ to a
‘limit cycle’ of period 2 in Fig 10.2. This then bifurcates
again i.e. the period double at a larger value of [J to a
limit cycle with period 4 in Fig 10.3. As p increase, the
period continues to double at successively closer and
closer value ofpuntili we have chaotic behavior
in Fig 10.4. In case of the map we have considered,this is
illustrated in the above figures with four values ofp(n =
0.99,period 1 fixed point), (u = 1.1,period 2 limit cycle),
(n=1.24, period 4 limit cycle) and (n = 1.35,chaos).
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