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Abstract: There are many forecasting models like moving average  

MA (1), MA (2), weighted moving average, multiple moving 

average, simple exponential smoothing, double exponential 

smoothing, triple exponential smoothing, adaptive smoothing, auto 

regression AR (1), AR (2), ARMA, ARIMA, ARCH, GARCH, etc. 

In this paper we discussed about transformed variable ARMA 

models. ARMA model is a combination of auto regression with 

moving averages. Generally auto regression and moving averages 

are calculated with time series values. By taking log values and 

geometric mean ARMA model values smoothing the data. 

Arithmetic mean effects the extreme values where as geometric 

mean cannot effects extreme values as much as A.M.   By taking 

logarithm and geometric mean transformations to the time series 

observations to perform ARMA models, we get logarithm ARMA 

model and geometric mean ARMA model. Logarithm ARMA 

model and geometric mean ARMA model are tested for goodness 

of fit by using Kolomogrov-Smirnov test. Mean Square Error 

(MSE) criterion is used for choosing best model among ARMA (1, 

1), Logarithmic ARMA (1, 1) and geometric mean ARMA (1, 1) 

models. 

Keywords: Autoregressive Moving Average, Geometric Mean 

Autoregressive Moving Average, Logarithmic Autoregressive 

Moving Average, Kolmogrov-Smirnov test, Mean Square Error.  
 

1. Introduction 
A sequence of numerical data points in successive order, 

usually occurring in uniform intervals. A time series is 

simply a sequence of numbers collected at regular 

intervals over a period of time. Time series data may be 

in the form of years, or months, days, hours, minutes. 

Forecasting plays an important role in atmospheric 

sciences, population growth, in urbanization for 

estimation of growth of houses, etc. Time series 

forecasting is used to predict future values based on 

previously observed values. Forecasting involves making 

the best possible judgment about some future event. In 

other words, Forecasting is a numerical estimate of an 

event for some future data that can be achieved with a 

specified level of support and are reproducible. 
 

1.1 Moving average 
The simplest way to smooth a time series is to calculate a 

simple moving average. The smoothed statistic St is then 

just the mean of the last k observations. 
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where the choice of an integer k > 1 is arbitrary. A small 

value of k will have less the smoothing effect. 
 

1.2 Exponential Smoothing 
Exponential smoothing is the special type of moving 

average method in forecasting. In simple moving average, 

the mean of the past k observations that mean the weight 

of k time series observations having equal value 1/k. 

Where as in exponential smoothing, if observations get 

older weights are also exponentially deceasing. The most 

recent observations will usually provide the highest 

weight value and observation is get older its weight is 

decreasing. 
 

1.3 Single Exponential Smoothing 
Single exponential smoothing is also called a simple 

exponential smoothing. The parameter in simple 

exponential smoothing is 'α'. If we estimate forecast value 

of some 't+1' point then the equation becomes 

( )ttt1t FYαFF −+=+
 

where Ft+1 = forecast for time point 't+1' 

             Ft = forecast for time point 't' 

            Yt = our time series observation at time 't' 

             α = constant 

    α lies between 0 and 1. 

     α + β = 1 
 

1.4 ARMA model 

The basic elements of autoregressive (AR) and moving 

average (MA) models can be combined to produce a great 

variety of models. Combination of p
th

 order 

autoregressive model and q
th

 order moving average model 

called an ARMA (p, q) model and is expressed as 

1 1 2 2 1 1 2 2t t t p t p t t t q t q
Y c Y Y Y e e e eφ φ φ θ θ θ− − − − − −= + + + + + − − − −� �

 

where  Yt is time series value at time ‘t’ 

Yt-1, Yt-2 … Yt-p is time series values at time t-1, t-2 …t-p. 

et, et-1, et-2 … et-q are error terms at time t, t-1, t-2 … t-q 

respectively 

ϕ1, ϕ2 … ϕp are autoregressive coefficients  

θ1, θ2 …θq are error constants. 
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In the present study, we fitted ARMA (1, 1) model and 

we transform the data by logarithms and geometric 

moving averages, then fitted ARMA (1, 1) models of 

these data. These models are compared by using error 

measures like mean absolute error, and mean square 

error.  
 

2. Methodology  
In general ARMA is mixture of auto regression with 

moving average models. Autoregressive moving average 

model is also a forecasting model with time‘t’ as 

independent variable with one dependent variable time 

series variable ‘ut’. By taking log and geometric means, 

we estimate equations for ARMA. 

ARMA (1, 1) model is a combination of auto regression 

of order ‘1’ combined with moving average of order ‘1’. 

Auto regression of order ‘1’ is passing equation present 

time series value ‘Yt’ with one past time series value Yt-1 

is combination of present and past error terms. ARMA (1, 

1) is of the form 

1 1 1t t t t tY c Y e eφ θ− −= + + −  

where  Yt is time series value at time ‘t’ 

 Yt-1 is time series value at time t-1 

 et, et-1 are error terms at time t, t-1 respectively 

 ϕ1 is autoregressive coefficient  

 tθ  is error constant. 

2.1 Log transformed variable ARMA model 
We take log to time series variable data and is considered 

as main time series data, for performing ARMA (1, 1) 

model.  

Data may be as follows 

1 1 1
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By taking time‘t’ as independent variable and time series 

values as ‘ut’, we perform autoregressive moving average 

(1, 1) then we get the model of the form 

1 1 1t t t t tu u c e eφ θ− −= + + −  

where ut  is log Yt, log transformed time series value at 

time‘t’ 

ut-1 is log transformed time series value at time ‘t-1’ 

ut-1 = log Yt-1 

c is a constant 

et, et-1 are error terms at time ‘t’ and ‘t-1’ 

we get predicted values of log transformed model in the 

form of log, for taken out log we take antilog to predicted 

values and take that as estimated values. 

Antilog ut = estimated value of Yt 
 

2.2 Length of moving averages 

Length of moving average is calculated by using the 

following steps 

Step 1: For original data draw line graph by taking time 

on X-axis and time series value on Y- axis. 

Step 2: Point out the peaks in graph. 

Step 3: List out periods of different cycles exhibited by 

the data. 

Step 4: Calculate arithmetic mean of periods of different 

cycles exhibited by the data. A.M. gives length of moving 

averages. 
 

2.3 Geometric mean transformed variable ARMA 

model Generally Arithmetic means are using for 

calculation of moving averages. Mean or arithmetic mean 

plays an important role in time series analysis and 

forecasting methods. Mean is affected by extreme 

observations. Whereas G.M is not much affected as A.M. 

Geometric mean is n square root of product of x1, x2 … xn 

observations. 
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where x1, x2 … xn are n time series observations. 

Geometric mean is not affected as arithmetic mean due to 

extreme observations. ARMA model can be written in the 

form 

1 1 1(1,1) : t t t tARMA Y c Y e eφ θ −= + + −  

The above ARMA (1, 1) is obtained by combining auto 

regression of order ‘1’ with moving average of order ‘1’. 

Geometric mean transformed ARMA model is obtained 

by first transforming time series observations into 

geometric averages. If you compute 3 term geometric 

averages, we cannot obtain time series values for the 

beginning 2 terms. Forecast also possible for future years 

by using these geometric means. Data converted for 

geometric mean variable is 
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where  m is number of observations in geometric average 

Gm is m
th

 geometric average 

1 2
m

m m
G x x x= �  

Now we take time series values as geometric means for 

time ‘t’. If we perform ARMA (1,1) for this data, we get 

equation of the form 

1 1 1 1T T T TG c Gφ ε θ ε+ −= + + −  

where GT+1 is geometric mean time series observation at 

time T+1 
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GT is geometric mean time series observation at time ‘T’ 

Tε , 1Tε −  are error terms at times T, T-1 respectively 

1φ  is parameter for auto regression of geometric variables 

1θ  is a parameter for error terms 

c is a constant 
 

2.4 Kolmogrov - Smirnov test  

Various steps are involved in performing K-S test. 

1. The data consist of a random sample X1, X2 …. 

Xn of size n associated with some unknown 

distribution function, denoted by F(x). 

2. The sample is a random sample. 

3. Let S(x) be the empirical distribution function 

based on the random sample X1, X2 …. Xn. Let 

F
*
(x) be a completely specified hypothesized 

distribution function. 

4. Let the test statistic T be greatest (denoted by 

“sup” for supremum) vertical distance between 

S(x) and F
*
(x). In symbols, we say 

     For testing 
*( ) ( )sup

x

T F x S x= −
 

5.       *

0 : ( ) ( )H F x F x=   for all x from to−∞ ∞  

                  *

1 : ( ) ( )H F x F x≠  for at least one value of x 

6. If T exceeds the 1-α quantile as given by Table, 

then we reject H0 at the level of significance α. 

The approximate p-value can be found by 

interpolation in Table. 

Kolmogrov-Smirnov test is performed for testing good fit 

of ARMA. 
 

2.5 Mean square error (MSE)  
Mean of squared error terms gives mean square error. If 

we have two or more models, which model is the best can 

be determined by using MSE criteria. Formula for MSE is 

as follows 

2
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∑  is sum of squares of error terms ‘et’ 

et is error term at time ‘t’ 

Among many models, a model which possesses least 

MSE is the best model. 
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If MSE of GM ARMA (1, 1) is least when compared with 

MSE of ARMA (1, 1) and MSE of log ARMA (1, 1) 

model, then GM ARMA (1, 1) is the best model among 

the three models. 
 

3. Empirical investigations 
 In this ARMA model, we are using transformed variables 

xi’s, for which we use two transformations, they are log 

and geometric mean of the original values.  We compare 

ARMA (1, 1), log transformed variable ARMA (1, 1) and 

geometric mean observations for original variable ARMA 

(1, 1) model. 

The above three ARMA models are tested for its good fit 

using Kolmogrov-Smirnov one sample test. By using 

mean square error criteria we can determine which model 

is best among these three models. 

3.1 ARMA (1, 1):  
The combinations of auto regression of order’1’ with 

moving average of order ‘1’. ARMA (1, 1) and the fitted 

equation for the given data is  

Yt (general): ARMA (1, 1):  Yt = 78.890 - 0.999Yt-1 

+0.989et-1+et 
 

Table 1 

Year  Yield  Estimated Error  (Error)2 

1993 29.4 27.4998 1.9002 3.6108 

1994 27.1 27.3954 -0.2954 0.0873 

1995 27.9 27.5386 0.3614 0.1306 

1996 26.1 27.3185 -1.2185 1.4847 

1997 25.9 27.5454 -1.6454 2.7073 

1998 25.7 27.2809 -1.5809 2.4992 

1999 29.1 27.4893 1.6107 2.5944 

2000 28.8 27.1218 1.6782 2.8164 

2001 28.3 27.4368 0.8632 0.7451 

2002 27.6 27.0978 0.5022 0.2522 

2003 24.7 27.3965 -2.6965 7.2711 

2004 27.1 27.1413 -0.0413 0.0017 

2005 27.5 27.2664 0.2336 0.0546 

2006 27 27.0823 -0.0823 0.0068 

2007 26.3 27.2233 -0.9233 0.8525 

2008 25 27.0532 -2.0532 4.2156 

2009 29.7 27.2001 2.4999 6.2495 

2010 27.8 26.8857 0.9143 0.8359 

2011 28 27.1887 0.8113 0.6582 

2012 26.1 26.8376 -0.7376 0.5441 

   Total  37.6180 

   MSE 1.8809 

The above table-1 explains yield as time series values, 

estimated values and also mean square error values. 
 

3.2 Log transformed ARMA (1, 1)  
We transformed original variable by using ‘log’, we get 

log xt = ui. Using ut, we estimated ARMA (1, 1) equation 

and from that equation, we are estimated the values. Log 

transformed ARMA (1, 1) is as follows 

Yt = 2.258 – 0.999Yt-1 + 0.99et-1 + et 
 

3.3 Geometric mean ARMA (1, 1) model We estimated 

geometric mean of line length for original data. That 

geometric mean value is taken as original data, we fitted 
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geometric mean ARMA (1, 1) model and we predicted 

the observations.  

Geometric mean ARMA (1, 1) model is expressed 

GMARMA (1, 1): 

Yt ( with GMA ): Yt = 7.426 + 0.514 Yt-1 + 0.934 et-1 + et
 

Table 2 

 Year Yield 
Predicted 

log values 

Estimated 

Log ARMA 
(Error)2 

Predicted 

G.M Yield 

Estimated 

GMARMA 
(Error)2 

1993 29.4 1.4388 27.4663 3.7392       

1994 27.1 1.4373 27.3716 0.0738       

1995 27.9 1.4392 27.4916 0.1668 27.1650 27.1320 0.0011 

1996 26.1 1.4361 27.2961 1.4306 26.5613 27.1668 0.3667 

1997 25.9 1.4392 27.4916 2.5332 26.5250 26.5096 0.0002 

1998 25.7 1.4355 27.2584 2.4285 26.9951 26.8501 0.0210 

1999 29.1 1.4383 27.4347 2.7733 27.6338 27.1967 0.1910 

2000 28.8 1.4331 27.1082 2.8623 28.1918 27.7714 0.1768 

2001 28.3 1.4375 27.3842 0.8387 27.8674 28.0616 0.0377 

2002 27.6 1.4327 27.0832 0.2671 27.0953 27.3828 0.0827 

2003 24.7 1.4369 27.3464 7.0034 26.7938 26.9066 0.0127 

2004 27.1 1.4333 27.1206 0.0004 26.6247 26.9070 0.0797 

2005 27.5 1.4349 27.2207 0.078 26.7607 26.6730 0.0077 

2006 27 1.4323 27.0583 0.0034 26.7010 27.0777 0.1419 

2007 26.3 1.4342 27.1769 0.769 26.6886 26.6329 0.0031 

2008 25 1.4318 27.0271 4.1093 27.0451 27.0221 0.0005 

2009 29.7 1.4338 27.1519 6.4929 27.3574 27.1807 0.0312 

2010 27.8 1.4293 26.872 0.8612 27.7212 27.4866 0.0550 

2011 28 1.4335 27.1331 0.7515       

2012 26.1 1.4285 26.8225 0.5221       

   
Total 37.7045   Total 1.2092 

   
MSE 1.8852 

 
MSE 0.0756 

 

Above table-2 contains eight columns, first column tells 

about time‘t’ in years, second column tells about time 

series values (yields), third column tells about logarithm 

of predicted time series values, forth column gives 

estimated values using log transformed ARMA (1, 1) 

model, fifth column says about error squares. By using 

average of fifth column, we find mean square error value 

of log transformed ARMA (1, 1). Sixth column tells 

about Geometric mean of predicted time series values, 

seventh column gives estimated values using GMARMA 

(1, 1) model, and eighth column says about error squares. 

By using average of eighth column, we find mean square 

error value of GMARMA (1, 1). 
 

Comparison  
Kolomogrov-Smirnov one sample test is used for testing 

goodness of fit, Mean square error (MSE) is used for 

telling which model is better model compared with other 

models. 
 

Model MSE S K value P - value 

ARMA(1, 1) 1.8809 0.442 0.990 

LARMA(1, 1) 1.8852 0.421 0.994 

GMARMA(1, 1) 0.0756 0.672 0.757 

A plot is drawn taking years on x – axis and time series 

values, LARMA predicted values and GMARMA 

predicted values on y – axis, and is shown in figure-1.

Figure 1 
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4. Summary and Conclusions 
The fitted ARMA models are 

The ARMA(1,1)model: Yt = 78.890 - 0.999Yt-1 +0.989et-

1+et 

Log transformed ARMA (1, 1) model:  Yt = 2.258 – 

0.999Yt-1 + 0.99et-1 + et 

Geometric moving average of ARMA (1, 1) model: Yt = 

7.426 + 0.514 Yt-1 + 0.934 et-1 + et 

These three ARMA fitted models are good fit models, 

and tested using K-S test, and MSE is used for choosing 

best model among fitted three models. 

MSE of ARMA (1, 1) model: 1.880898373 

MSE of Log transformed ARMA (1, 1) model: 1.885224 

MSE of Geometric mean of ARMA (1, 1) model: 

0.075577 

MSE of Geometric mean of ARMA (1, 1) model is less 

than general ARMA (1, 1) and log transformed ARMA 

(1, 1) models. So, we conclude that the geometric moving 

average model is the best model than general ARMA (1, 

1) and log transformed ARMA (1, 1) models. 
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