

On Fuzzy Almost Resolvable and Fuzzy Almost Irresolvable Spaces

G. Thangaraj*, D.Vijayan[#]

*Department Of Mathematics, Thiruvalluvar University, Vellore- 632 115, Tamilnadu, INDIA.

[#]Department Of Mathematics, Muthurangam Government Arts College (Autonomous) Vellore- 632001, Tamilnadu, INDIA.

^{*}Corresponding Address:

g.thangaraj@rediffmail.com

Research Article

Abstract: In this paper the concepts of fuzzy almost resolvable and fuzzy almost irresolvable spaces are introduced and Characterizations of fuzzy almost resolvable spaces and levels of fuzzy irresolvability are studied. Several examples are given to illustrate the concepts introduced in this paper.

Keywords: Fuzzy resolvable, fuzzy irresolvable, fuzzy almost resolvable and fuzzy almost irresolvable, fuzzy first category and fuzzy submaximal and fuzzy Baire spaces.

2000 AMS Classification: 54 A 40, 03 E 72

1. Introduction

The fuzzy concept has invaded almost all branches of Mathematics ever since the introduction of fuzzy set by L. A. ZADEH [12]. The theory of fuzzy topological was introduced and developed by C.L.CHANG [3]. Since then much attention has been paid to generalize the basic concepts of General Topology in fuzzy setting and thus a modern theory of fuzzy topology has been developed. E.HEWIT [5] introduced the concepts of resolvability and irresolvability in topological spaces. A.G.EL'kin [4] introduced open hereditarily irresolvable spaces in the classical topology. The concepts of almost resolvable spaces was introduced by RICHARD BOLSTEIN [8] as a generalization of resolvable spaces of E.HEWIT. In recent years, fuzzy topology has been found to be very useful in solving many practical problems. In [6] EL. NASCHIE showed that the notion of fuzzy topology might be relevant to Quantum Particle Physics in connection with String theory. In this paper we introduce the concepts of fuzzy almost resolvable and fuzzy almost irresolvable spaces. Also we discuss several characterizations of fuzzy almost resolvable spaces and study inter-relations between fuzzy submaximal, fuzzy openhereditarily irresolvable, fuzzy irresolvable and fuzzy almost irresolvable spaces.

Several examples are given to illustrate the concepts introduced in this paper.

2. Preliminaries

By a fuzzy topological space we shall mean a non-empty set X together with a fuzzy topology T (in the sense of Chang) and denote it by (X,T) .

Definition 2.1: Let λ and μ be any two fuzzy sets in (X,T) . Then we define

$\lambda \vee \mu : X \rightarrow [0,1]$ as follows : $(\lambda \vee \mu)(x) = \text{Max} \{ \lambda(x), \mu(x) \}$. Also we define

$\lambda \wedge \mu : X \rightarrow [0,1]$ as follows: $(\lambda \wedge \mu)(x) = \text{Min} \{ \lambda(x), \mu(x) \}$.

Definition 2.2 : Let (X,T) be a fuzzy topological space and λ be any fuzzy set in (X,T) . We define $\text{int}(\lambda) = \vee \{ \mu / \mu \leq \lambda, \mu \in T \}$ and $\text{cl}(\lambda) = \wedge \{ \mu / \lambda \leq \mu, 1 - \mu \in T \}$.

For any fuzzy set in a fuzzy topological space (X,T) , it is easy to see that $1 - \text{cl}(\lambda) = \text{int}(1 - \lambda)$ and $1 - \text{int}(\lambda) = \text{cl}(1 - \lambda)$ [1].

Definition 2.3 : Let (X,T) and (Y,S) be any two fuzzy topological spaces. Let f be a function from the fuzzy topological space (X,T) to the fuzzy topological space (Y,S) . Let λ be a fuzzy set in (Y,S) . The inverse image of λ under f written as $f^{-1}(\lambda)$, is the fuzzy set in (X,T) defined by $f^{-1}(\lambda)(x) = \lambda(f(x))$, for all $x \in X$. Also the image of μ in (X,T) under f written as $f(\mu)$ is the fuzzy set in (Y,S) defined by

$$f(\mu)(y) = \begin{cases} \sup_{x \in f^{-1}(y)} \mu(x) & \text{if } f^{-1}(y) \text{ is non-empty;} \\ 0 & \text{otherwise.} \end{cases} \quad \text{for}$$

each $y \in Y$.

Lemma 2.1 [3] : Let $f : (X,T) \rightarrow (Y,S)$ be a mapping. For fuzzy sets λ and μ of (X,T) and (Y,S) respectively, the following statements hold :

- (1) $f f^{-1}(\mu) \leq \mu$;
- (2) $f^{-1}f(\lambda) \geq \lambda$;
- (3) $f(1 - \lambda) \geq 1 - f(\lambda)$;
- (4) $f^{-1}(1 - \mu) = 1 - f^{-1}(\mu)$;
- (5) If f is one - to - one, then $f^{-1}f(\lambda) = \lambda$;
- (6) If f is onto, then $f f^{-1}(\mu) = \mu$;
- (7) If f is one - to - one and onto, then $f(1 - \lambda) = 1 - f(\lambda)$.

Definition 2.4 [9] : A fuzzy set λ in a fuzzy topological space (X,T) is called fuzzy dense if there exists no fuzzy closed set μ in (X,T) such that $\lambda < \mu < 1$.

Definition 2.5 [9] : A fuzzy set λ in a fuzzy topological space (X,T) is called fuzzy nowhere dense if there exists no non - zero fuzzy open set μ in (X,T) such that $\mu < \text{cl}(\lambda)$. That is, $\text{int cl}(\lambda) = 0$.

Definition 2.6[10] : A fuzzy topological space (X,T) is called a fuzzy open hereditarily irresolvable space if $\text{int cl}(\lambda) \neq 0$, then $\text{int}(\lambda) \neq 0$ for any non - zero fuzzy set in (X,T) .

Definition 2.7 [2]: A fuzzy topological space (X,T) is called a fuzzy submaximal space, if $\text{cl}(\lambda) = 1$ for any non-zero fuzzy set λ in (X,T) , then $\lambda \in T$.

Definition 2.8 [9]: A fuzzy topological space (X,T) is called fuzzy first category if $1 = \bigvee_{i=1}^{\infty} (\lambda_i)$, where λ_i 's are fuzzy nowhere dense sets in (X,T) . A topological space which is not of fuzzy first category, is said to be of fuzzy second category.

Lemma 2.2 [1] : For a family of $\{\lambda_{\alpha}\}$ of fuzzy sets of a fuzzy topological space (X,T) , $\vee \text{cl}(\lambda_{\alpha}) \leq \text{cl}(\vee \lambda_{\alpha})$. In case A is a finite set, $\vee \text{cl}(\lambda_{\alpha}) = \text{cl}(\vee \lambda_{\alpha})$. Also $\vee \text{int}(\lambda_{\alpha}) \leq \text{int}(\vee \lambda_{\alpha})$.

Definition 2.9[10] : A fuzzy topological space (X,T) is called a fuzzy resolvable space if there exists a fuzzy dense set λ in (X,T) such that $\text{cl}(1-\lambda) = 1$. Otherwise (X,T) is called a fuzzy irresolvable space.

DEFINITION 2.10[7] : Two fuzzy sets μ and ν of a fuzzy topological space (X,T) is said to be disjoint if they do not intersect at any point of X . That is, $\mu(x) + \nu(x) \leq 1$ and $(\mu \wedge \nu)(x) = 0$ for all $x \in X$.

DEFINITION 2.11[11]: Let (X,T) be a fuzzy topological space. Then (X,T) is called a fuzzy Baire Space if $\text{nt}(\bigvee_{i=1}^{\infty} (\lambda_i)) = 0$, where λ_i 's fuzzy nowhere dense sets in (X,T) .

3. Fuzzy Almost Resolvable Spaces

Motivated by the classical concept introduced in [8] we shall now define:

DEFINITION 3.1: A fuzzy topological space (X,T) is called a fuzzy almost resolvable space if $\bigvee_{i=1}^{\infty} (\lambda_i) = 1$, wherethe fuzzy sets λ_i 's in (X,T) are such that $\text{int}(\lambda_i) = 0$. Otherwise (X,T) is called a fuzzy almost irresolvable space.

Example 3.1: Let $X = \{a, b, c\}$.The fuzzy sets λ , μ and ν are defined on X as follows:

$\lambda : X \rightarrow [0,1]$ is defined as $\lambda(a) = 1$; $\lambda(b) = 0.3$; $\lambda(c) = 0.7$

$\mu : X \rightarrow [0,1]$ is defined as $\mu(a) = 0.4$; $\mu(b) = 1$; $\mu(c) = 0.6$.

$\nu : X \rightarrow [0,1]$ is defined as $\nu(a) = 0.5$; $\nu(b) = 0.6$; $\nu(c) = 1$.

Then, clearly $T = \{0, \lambda, \mu, \nu, \lambda \vee \mu, \lambda \vee \nu, \mu \vee \nu, \lambda \wedge \mu, \lambda \wedge \nu, \mu \wedge \nu, \lambda \vee (\mu \wedge \nu), \mu \vee (\lambda \wedge \nu), \nu \wedge (\lambda \vee \mu), 1\}$ is a fuzzytopology on X . Now consider the following fuzzy sets defined on X as follows:

$\alpha : X \rightarrow [0,1]$ is defined as $\alpha(a) = 1$; $\alpha(b) = 0.2$; $\alpha(c) = 0.3$.

$\beta : X \rightarrow [0,1]$ is defined as $\beta(a) = 0.2$; $\beta(b) = 1$; $\beta(c) = 0.7$.

$\gamma : X \rightarrow [0,1]$ is defined as $\gamma(a) = 0.3$; $\gamma(b) = 0.4$; $\gamma(c) = 1$.

$\eta : X \rightarrow [0,1]$ is defined as $\eta(a) = 1$; $\eta(b) = 0.1$; $\eta(c) = 0.5$.

Then $\text{int}(\alpha) = 0$; $\text{int}(\beta) = 0$; $\text{int}(\gamma) = 0$ and $\text{int}(\eta) = 0$ and $\{\alpha \vee \beta \vee \gamma \vee \eta\} = 1$.

Hence (X,T) is a fuzzy almost resolvable space.

Example 3.2: Let λ , μ , ν and η be fuzzy sets of $I = [0,1]$ as follows :

$$\lambda(x) = 1 - x ; 0 \leq x \leq 1,$$

$$\mu(x) = \begin{cases} 1 - x, 0 \leq x \leq \frac{1}{2}; \\ x, \frac{1}{2} \leq x \leq 1. \end{cases}$$

$$\nu(x) = \begin{cases} 1 - 2x, 0 \leq x \leq \frac{1}{2}; \\ 0, \frac{1}{2} \leq x \leq 1. \end{cases}$$

$$\eta(x) = \begin{cases} 1, 0 \leq x \leq \frac{1}{2}; \\ 0, \frac{1}{2} \leq x \leq 1. \end{cases}$$

Clearly $T = \{0, \nu, \eta, \nu \wedge \eta, \nu \wedge \eta, 1\}$ is a fuzzy topology on I . Now $\text{int}(1-\lambda) = 0$, $\text{int}(1-\mu) = 0$, $\text{int}(1-\nu) = 0$, $\text{int}(1-\eta) = 0$, $\text{int}(1 - [\nu \wedge \eta]) = 0$ and $\text{int}(1 - [\nu \wedge \eta]) = 0$.

Now $\{1-\lambda \vee 1-\mu \vee 1-\nu \vee 1-\eta \vee 1 - [\nu \wedge \eta] \vee 1 - [\nu \wedge \eta]\} \neq 1$ and hence (I,T) is a fuzzy almost irresolvable space.

Proposition 3.1: A fuzzy topological space (X,T) is a fuzzy resolvable space if $\bigvee_{i=1}^N (\lambda_i) = 1$, wherethe fuzzy sets λ_i 's in (X,T) are such that $\text{int}(\lambda_i) = 0$.

Proof: Now $\bigvee_{i=1}^N (\lambda_i) = 1$ implies that $1 - \bigvee_{i=1}^N (\lambda_i) = 0$. Then $\bigwedge_{i=1}^N (1 - \lambda_i) = 0$.

Hence there must be atleast two non - zero disjoint fuzzy sets $1 - \lambda_i$ and $1 - \lambda_j$ in (X,T) . Then $(1 - \lambda_i) + (1 - \lambda_j) \leq 1$, which implies that $(1 - \lambda_i) \leq \lambda_j$ and hence $\text{cl}(1 - \lambda_i) \leq \text{cl}(\lambda_j)$. Now $\text{int}(\lambda_i) = 0$ implies that $1 - \text{int}(\lambda_i) = 1$ and hence $\text{cl}(1 - \lambda_i) = 1$.

Then $1 \leq \text{cl}(\lambda_j)$.That is, $\text{cl}(\lambda_j) = 1$. Also $\text{int}(\lambda_j) = 0$ implies that $\text{cl}(1 - \lambda_j) = 1$. Hence the fuzzy topological space (X,T) has a dense fuzzy set λ_j such that $\text{cl}(1 - \lambda_j) = 1$.Hence (X,T) is a fuzzy resolvable space. It is clear from the definition that every fuzzy resolvable spaceis a fuzzy almost resolvable space.

Proposition 3.2: If thefuzzy topological space (X,T) is a fuzzy first category space, then (X,T) is a fuzzy almost resolvable space.

Proof: Since the fuzzy topological space (X,T) is of fuzzy first category, we have $1 = \bigvee_{i=1}^{\infty} (\lambda_i)$, where λ_i 's are fuzzy nowhere dense sets in (X,T). Now λ_i is a fuzzy nowhere dense set implies that $\text{int cl}(\lambda_i) = 0$. Since $\text{int}(\lambda_i) \leq \text{int cl}(\lambda_i)$ implies that $\text{int}(\lambda_i) = 0$. Hence $\bigvee_{i=1}^{\infty} (\lambda_i) = 1$, where $\text{int}(\lambda_i) = 0$ and therefore (X,T) is a fuzzy almost resolvable space.

Remarks: If thefuzzy topological space (X,T) is a fuzzy almost resolvable space, Then (X,T) need not be a fuzzy firstcategory space. For, consider the following example:

Example 3.3: Let $X = \{a, b, c\}$.The fuzzy sets λ , μ and ν are defined on X as follows:

$\lambda : X \rightarrow [0,1]$ is defined as $\lambda(a) = 1$; $\lambda(b) = 0.2$; $\lambda(c) = 0.7$

$\mu : X \rightarrow [0,1]$ is defined as $\mu(a) = 0.3$; $\mu(b) = 1$; $\mu(c) = 0.2$.

$\nu : X \rightarrow [0,1]$ is defined as $\nu(a) = 0.7$; $\nu(b) = 0.4$; $\nu(c) = 1$.

Then, clearly $T = \{0, \lambda, \mu, \nu, \lambda \vee \mu, \lambda \vee \nu, \mu \vee \nu, \lambda \wedge \mu, \lambda \wedge \nu, \mu \wedge \nu, \lambda \vee (\mu \wedge \nu)\}$

$\mu \vee (\lambda \wedge \nu), \nu \wedge (\lambda \vee \mu), 1\}$ is a fuzzy topology on X. Now consider the following fuzzy sets defined on X as follows:

$\alpha : X \rightarrow [0,1]$ is defined as $\alpha_n(a) = 1$; $\alpha_n(b) = 0.1$; $\alpha_n(c) = 0.0$

$\beta : X \rightarrow [0,1]$ is defined as $\beta_n(a) = 0.2$; $\beta_n(b) = 1$; $\beta_n(c) = 0.0$.

$\gamma : X \rightarrow [0,1]$ is defined as $\gamma_n(a) = 0.0$; $\gamma_n(b) = 0.1$; $\gamma_n(c) = 1$.

where $n \in I$. Then $\text{int}(\alpha_n) = 0$; $\text{int}(\beta_n) = 0$ and $\text{int}(\gamma_n) = 0$ and $(\alpha_n) \vee (\beta_n) \vee (\gamma_n) \vee (\eta_n) = 1$.

Hence (X,T) is a fuzzy almost resolvable space.The fuzzy nowhere dense sets in

(X,T) are $[1-\lambda], [1-\mu], [1-\nu], [1-(\lambda \vee \mu)], [1-(\lambda \vee \nu)], [1-(\mu \wedge \nu)], 1 - [\lambda \vee (\mu \wedge \nu)]$,

$1 - [\mu \vee (\lambda \wedge \nu)], 1 - [\nu \wedge (\lambda \vee \mu)]$ and $[1 - \alpha_n], [1 - \beta_n], [1 - \gamma_n]$ and $\bigvee_{i=1}^{\infty} (\lambda_i) \neq 1$, where λ_i 's are fuzzy nowhere dense sets in (X,T) and hence (X,T) is not a fuzzy first category space.

Theorem 3.1 [10]: If the fuzzy topological space(X,T) is a fuzzyopen hereditarily Irresolvable space , then $\text{int}(\lambda) = 0$ for any non-zero fuzzy dense set λ in (X,T) implies that $\text{int cl}(\lambda) = 0$.

Proposition 3.3: In an fuzzy open hereditarily irresolvable space (X,T) every fuzzy almost resolvable spaceis a fuzzy first category space.

Proof: Letthe fuzzy topological space (X,T) be a fuzzy almost resolvable space.Then we have $\bigvee_{i=1}^{\infty} (\lambda_i) =$

1, whereint $(\lambda_i) = 0$ in (X,T). Since (X,T) isfuzzy openhereditarily irresolvable int $(\lambda_i) = 0$ implies that int cl $(\lambda_i) = 0$ and hence λ_i 's are fuzzy nowhere dense sets in (X,T).Then $\bigvee_{i=1}^{\infty} (\lambda_i) = 1$, where λ_i 's are fuzzy nowhere sets in (X,T) and therefore (X,T) is a fuzzy first category space.

Proposition 3.4: If thefuzzy topological space (X,T) is a fuzzy almost resolvable space, then $\bigwedge_{i=1}^{\infty} (\mu_i) = 0$, where μ_i 's are fuzzy dense sets in (X,T).

Proof: Since the fuzzy topological space (X,T) is a fuzzy almost resolvable space, we have $\bigvee_{i=1}^{\infty} (\lambda_i) = 1$, whereint $(\lambda_i) = 0$ in (X,T).Now int $(\lambda_i) = 0$ implies that $1 - \text{int}(\lambda_i) = 1 - 0 = 1$. Then $\text{cl}(1 - \lambda_i) = 1$. Also $1 - \bigvee_{i=1}^{\infty} (\lambda_i) = 0$ implies that $\bigwedge_{i=1}^{\infty} (1 - \lambda_i) = 0$. Let $1 - \lambda_i = \mu_i$. Hence $\bigwedge_{i=1}^{\infty} (\mu_i) = 0$ where μ_i 's are fuzzy dense sets in (X,T).

Proposition 3.5: If thefuzzy topological space (X,T) is a fuzzy almost resolvable and fuzzy submaximal space, then $\bigvee_{i=1}^{\infty} (\lambda_i) = 1$, where λ_i 's are fuzzy closed sets in (X,T).

Proof: Since the fuzzy topological space (X,T) is a fuzzy almost resolvable space, By proposition 3.4, we have $\bigwedge_{i=1}^{\infty} (\mu_i) = 0$, where μ_i 's are fuzzy dense sets in (X,T). Since (X,T) is a fuzzy submaximal space, $\text{cl}(\mu_i) = 1$ implies that $\mu_i \in T$. Then $\bigwedge_{i=1}^{\infty} (\mu_i) = 0$ implies that $1 - \bigwedge_{i=1}^{\infty} (\mu_i) = 1$ and hence $\bigvee_{i=1}^{\infty} (1 - \mu_i) = 1$, where $1 - \mu_i$'s are fuzzy closed sets in (X,T). $1 - \mu_i = \lambda_i$. Hence $\bigvee_{i=1}^{\infty} (\lambda_i) = 1$, where λ_i 's are fuzzy closed sets in (X,T).

Proposition 3.6: If thefuzzy topological space (X,T) is a fuzzy irresolvable space, Then(X,T) is not a fuzzy almost resolvable space.

Proof: Suppose thatthe fuzzy topological space (X,T) is a fuzzy almost resolvable space. Then $\bigvee_{i=1}^{\infty} (\lambda_i) = 1$, where int $(\lambda_i) = 0$ in (X,T), implies that $\bigwedge_{i=1}^{\infty} (1 - \lambda_i) = 0$. Hence there must be atleast two non - zero disjoint fuzzy sets $1 - \lambda_i$ and $1 - \lambda_j$ in (X,T). Then $(1 - \lambda_i) + (1 - \lambda_j) \leq 1$, which implies that $(1 - \lambda_i) \leq \lambda_j$ and hence $\text{cl}(1 - \lambda_i) \leq \text{cl}(\lambda_j)$.Then $1 - \text{int}(\lambda_i) \leq \text{cl}(\lambda_j)$.Now int $(\lambda_i) = 0$ implies that $1 \leq \text{cl}(\lambda_j)$. That is, $\text{cl}(\lambda_j) = 1$. Also int $(\lambda_j) = 0$ implies that $1 - \text{int}(\lambda_j) = 1$ and hence $\text{cl}(1 - \lambda_j) = 1$. Hence (X,T)has a dense fuzzy set λ_j such that $\text{cl}(1 - \lambda_j) = 1$,which means that (X,T) is a fuzzy resolvable space.But this is a contradiction to (X,T) being a fuzzy irresolvable space. Therefore (X,T) is not a fuzzyalmost resolvable space.

Proposition 3.7: If thefuzzy topological space (X, T) is a fuzzy Baire space, Then (X, T) is a fuzzy almost irresolvable space.

Proof: Since (X, T) is a fuzzy Baire space, $\text{int} (V_{i=1}^{\infty} (\lambda_i)) = 0$, where λ_i s are fuzzy nowhere dense sets in (X, T) . Now λ_i is a fuzzy nowhere dense set implies that $\text{int cl} (\lambda_i) = 0$. Since $\text{int} (\lambda_i) \leq \text{int cl} (\lambda_i)$, we have $\text{int} (\lambda_i) = 0$. Hence $\text{int} (V_{i=1}^{\infty} (\lambda_i)) = 0$, where $\text{int} (\lambda_i) = 0$. Suppose that (X, T) is a fuzzy almost resolvable space. Then $V_{i=1}^{\infty} (\lambda_i) = 1$, where $\text{int} (\lambda_i) = 0$. Now $\text{int} (V_{i=1}^{\infty} (\lambda_i)) = \text{int} (1) = 1$, which implies that $0 = 1$, a contradiction. Hence we must have $V_{i=1}^{\infty} (\lambda_i) \neq 1$, where $\text{int} (\lambda_i) = 0$. Therefore (X, T) is a fuzzy almost irresolvable space.

4. Levels of Fuzzy Irresolvability

Theorem 4.1 [10]: If (X, T) is a fuzzy irresolvable space if and only if $\text{int} (\lambda) \neq 0$ for all fuzzy dense sets λ in (X, T) .

Proposition 4.1: For any fuzzy topological space (X, T) we have the following relations: Fuzzy submaximality fuzzy open hereditarily irresolvability fuzzy irresolvability fuzzy almost irresolvability.

Proof: Let (X, T) be a fuzzy submaximal space. Then, $\text{cl}(\lambda) = 1$ implies that $\lambda \in T$. Suppose that $\text{int} (\lambda) = 0$ for any non-zero fuzzy set λ in (X, T) . Then $1 - \text{int} (\lambda) = 1 - 0 = 1$ implies that $\text{cl} (1 - \lambda) = 1$. Since (X, T) is fuzzy submaximal, $(1 - \lambda) \in T$. Then λ is a fuzzy closed set in (X, T) . Hence $\lambda = \text{cl} (\lambda)$ implies that $\text{int} (\lambda) = \text{int cl} (\lambda)$. $\text{int} (\lambda) = 0$ implies that $\text{int cl} (\lambda) = 0$. Therefore (X, T) is a fuzzyopen hereditarily irresolvable space. Hence fuzzy submaximality fuzzy open hereditarily irresolvability. Now let (X, T) be a fuzzy open hereditarily irresolvable space. Let λ be a fuzzy dense set in (X, T) . Then, $\text{cl} (\lambda) = 1$ implies that $\text{int} (1 - \lambda) = 0$. Since (X, T) is fuzzyopen hereditarily irresolvable, $\text{int} (1 - \lambda) = 0$ implies that $\text{int cl} (1 - \lambda) = 0$. Now we claim that $\text{cl} (1 - \lambda) \neq 1$. Suppose $\text{cl} (1 - \lambda) = 1$. Then, $\text{int cl} (1 - \lambda) = \text{int} (1) = 1$ implies that $0 = 1$, a contradiction. Hence we must have $\text{cl} (1 - \lambda) \neq 1$. Therefore $\text{cl} (\lambda) = 1$ implies that $\text{cl} (1 - \lambda) \neq 1$ which means that (X, T) is a fuzzy irresolvable space. Hence fuzzy open hereditarily irresolvability fuzzy irresolvability. Now let (X, T) be a fuzzy irresolvable space. Then $\text{cl} (\lambda_i) = 1$ implies that $\text{cl} (1 - \lambda_i) \neq 1$. Then $\text{int} (\lambda_i) \neq 0$ for all $i \in I$. Now $\text{cl} (\lambda_i) = 1$ implies that $\text{int} (1 - \lambda_i) = 0$. We claim that $V_{i=1}^{\infty} (1 - \lambda_i) \neq 1$. Suppose that $V_{i=1}^{\infty} (1 - \lambda_i) = 1$. Then, $1 - \wedge_{i=1}^{\infty} (\lambda_i) = 1$ implies that $\wedge_{i=1}^{\infty} (\lambda_i) = 0$. Hence there must be atleast two non-zero disjoint fuzzy sets λ_i and λ_j in (X, T) . Then, $\lambda_i + \lambda_j \leq 1$, which implies that $\lambda_i \leq 1 - \lambda_j$. Hence $\text{cl} (\lambda_i) \leq \text{cl} (1 - \lambda_j)$. Then, $1 \leq \text{cl} (1 - \lambda_j)$. That is, $\text{cl} ((1 - \lambda_j)) = 1$. Then, $\text{int} (\lambda_j) = 0$,

a contradiction toint $(\lambda_i) \neq 0$, for all $i \in I$. Hence $V_{i=1}^{\infty} (1 - \lambda_i) \neq 1$, where $\text{int} (1 - \lambda_i) = 0$. Therefore (X, T) is a fuzzyalmost irresolvable space. Hence fuzzy irresolvability fuzzy almost irresolvability.

Remarks : The implications of theabove relations need not be true. For, consider thefollowing examples :

Example 4.1 : Let μ_1, μ_2 and μ_3 be fuzzy sets of $I = [0, 1]$ as follows :

$$\mu_1(x) = \begin{cases} 1, 0 \leq x \leq \frac{1}{2}; \\ 2 - 2x, \frac{1}{2} \leq x \leq 1. \end{cases}$$

$$\mu_2(x) = \begin{cases} 0, 0 \leq x \leq \frac{1}{4} \\ 4x - 1, \frac{1}{4} \leq x \leq \frac{1}{2} \\ 1, \frac{1}{2} \leq x \leq 1. \end{cases}$$

$$\mu_3(x) = \begin{cases} 1, 0 \leq x \leq \frac{1}{4}; \\ \frac{4}{3}(1 - x), \frac{1}{4} \leq x \leq 1. \end{cases}$$

Clearly $T = \{0, \mu_2, \mu_3, (\mu_2 \vee \mu_3), (\mu_2 \wedge \mu_3), 1\}$ is a fuzzy topology on I . Now We have $\text{int} (1 - \mu_1) = 0$; $\text{int} (1 - \mu_2) = 0$; $\text{int} (1 - \mu_3) = 0$; $\text{int} (1 - [(\mu_2 \vee \mu_3)]) = 0$ and $\text{int} (1 - [(\mu_2 \wedge \mu_3)]) = 0$. Also $\text{int cl} (1 - \mu_1) = 0$; $\text{int cl} (1 - \mu_2) = 0$; $\text{int cl} (1 - \mu_3) = 0$; $\text{int cl} (1 - [(\mu_2 \vee \mu_3)]) = 0$ and $\text{int cl} (1 - [(\mu_2 \wedge \mu_3)]) = 0$. Hence the fuzzy topological space (I, T) is fuzzyopen hereditarily irresolvable. But (I, T) is not a fuzzy submaximal space, since $\text{cl} (\mu_1) = 1$ and μ_1 is not a fuzzy open set in (I, T) .

Example 4.2: Let $X = \{a, b\}$. The fuzzy sets λ, μ are defined on X as follows :

$\lambda : X \rightarrow [0, 1]$ is defined as $\lambda(a) = 0.2; \lambda(b) = 0.3$.

$\mu : X \rightarrow [0, 1]$ is defined as $\mu(a) = 0.6; \mu(b) = 0.9$.

Clearly $T = \{0, \lambda, 1\}$ is a fuzzy topology on X . Now μ is a fuzzy dense set in (X, T) and $\text{cl} (1 - \mu) = 1 - \mu \neq 1$. Hence (X, T) is a fuzzy irresolvable space. But (X, T) is not a fuzzy open hereditarily irresolvable space, since $\text{int} (1 - \mu) = 0$ but $\text{int cl} (1 - \mu) = \mu \neq 1$.

Example 4.3: Let μ_1, μ_2 and μ_3 be fuzzy sets of $I = [0, 1]$ as follows :

$$\mu_1(x) = \begin{cases} 1, 0 \leq x \leq \frac{1}{2}; \\ 2 - 2x, \frac{1}{2} \leq x \leq 1. \end{cases}$$

$$\mu_2(x) = \begin{cases} 0, 0 \leq x \leq \frac{1}{4} \\ 4x - 1, \frac{1}{4} \leq x \leq \frac{1}{2} \\ 1, \frac{1}{2} \leq x \leq 1. \end{cases}$$

$$\mu_3(x) = \begin{cases} 1, & 0 \leq x \leq \frac{1}{4}; \\ \frac{4}{3}(1-x), & \frac{1}{4} \leq x \leq 1. \end{cases}$$

Clearly $T = \{0, \mu_1, \mu_2, (\mu_1 \wedge \mu_2), 1\}$ is a fuzzy topology on I . Now by computations we have $\text{int}(1 - \mu_1) = 0$; $\text{int}(1 - \mu_2) = 0$; $\text{int}(1 - [\mu_1 \wedge \mu_2]) = 0$; $\text{int}(\mu_3) = 0$ $\text{int}(1 - \mu_3) = 0$; $\text{int}(\mu_2 \wedge \mu_3) = 0$; $\text{int}(1 - [(\mu_2 \vee \mu_3)]) = 0$ and $\text{int}(1 - [\mu_2 \wedge \mu_3]) = 0$. $\{(1 - \mu_1) \vee (1 - \mu_2) \vee (\mu_3) \vee (1 - \mu_3) \vee (\mu_2 \wedge \mu_3) \vee (1 - [(\mu_2 \vee \mu_3)]) \vee (1 - [\mu_2 \wedge \mu_3]) \vee (1 - [\mu_1 \wedge \mu_2])\} \neq 1$. Hence the fuzzy topological space (I, T) is a fuzzy almost irresolvable space. But (I, T) is not a fuzzy irresolvable space, since $\text{cl}(\mu_3) = 1$ and $\text{int}(\mu_3) = 0$.

5. Functions and Fuzzy Almost Resolvable spaces

Definition 5.1 [9]: A function $f: (X, T) \rightarrow (Y, S)$ from a fuzzy topological space (X, T) into another fuzzy topological space (Y, S) is called somewhat fuzzy open if $\lambda \in T$ and $\lambda \neq 0$ implies that there exists a fuzzy open set μ in (Y, S) such that $\mu \neq 0$ and $\mu \leq f(\lambda)$.

Theorem 5.1 [10]: Let (X, T) and (Y, S) be any two fuzzy topological spaces. If the function $f: (X, T) \rightarrow (Y, S)$ is somewhat fuzzy open function and if $\text{int}(\lambda) = 0$ for any non-zero fuzzy set λ in (Y, S) , $\text{int}f^{-1}(\lambda) = 0$ in (X, T) .

Proposition 5.1: If $f: (X, T) \rightarrow (Y, S)$ is a somewhat fuzzy open function from a fuzzy topological space (X, T) onto a fuzzy almost resolvable space (Y, S) , then (X, T) is a fuzzy almost resolvable space.

Proof: Since (Y, S) is a fuzzy almost resolvable space, $(V_{i=1}^{\infty}(\lambda_i)) = 1$ where the λ_i 's are fuzzy sets in (Y, S) such that $\text{int}(\lambda_i) = 0$. Then $\text{int}f^{-1}(V_{i=1}^{\infty}(\lambda_i)) = \text{int}f^{-1}(1) = 1$ implies that $\text{int}f^{-1}(\lambda_i) = 1$. Now since f is somewhat fuzzy open and $\text{int}(\lambda_i) = 0$, by theorem 5.1, we have $\text{int}f^{-1}(\lambda_i) = 0$. Hence $\text{int}f^{-1}(\lambda_i) = 1$, where $\text{int}f^{-1}(\lambda_i) = 0$ in (X, T) . Therefore (X, T) is a fuzzy almost resolvable space.

Definition 5.2 [10]: Let (X, T) and (Y, S) be any two fuzzy topological spaces. If the function $f: (X, T) \rightarrow (Y, S)$ is somewhat fuzzy continuous and one-to-one

and if $\text{int}(\lambda) = 0$ for any non-zero fuzzy set λ in (X, T) , $\text{int}[f(\lambda)] = 0$ in (Y, S) .

Proposition 5.2: If $f: (X, T) \rightarrow (Y, S)$ is a somewhat fuzzy continuous function from a fuzzy almost resolvable space (X, T) onto a fuzzy topological space (Y, S) , then (Y, S) is a fuzzy almost resolvable space.

Proof: Since (X, T) is a fuzzy almost resolvable space, $(V_{i=1}^{\infty}(\lambda_i)) = 1$ where the λ_i 's are fuzzy sets in (X, T) such that $\text{int}(\lambda_i) = 0$. Then $f(V_{i=1}^{\infty}(\lambda_i)) = f(1) = 1$. Then $\text{int}(V_{i=1}^{\infty}(\lambda_i)) \leq \text{int}f(V_{i=1}^{\infty}(\lambda_i))$ implies that $1 \leq \text{int}f(\lambda_i)$. That is, $\text{int}f(\lambda_i) = 1$. Now since the function f is somewhat fuzzy continuous and $\text{int}(\lambda_i) = 0$, by theorem 5.2, we have $\text{int}[f(\lambda_i)] = 0$. Hence $\text{int}f(\lambda_i) = 1$, where $\text{int}[f(\lambda_i)] = 0$ in (Y, S) . Therefore (Y, S) is a fuzzy almost resolvable space.

References

1. K.K. Azad, On Fuzzy semi continuity, Fuzzy almost continuity and Fuzzy Weakly continuity, J. Math. Anal. Appl., 82 (1981), 14 – 32.
2. G. Balasubramanian, Maximal fuzzy topologies, KYBERNETIKA No.5,31 (1995), 459-464.
3. C.L Chang, Fuzzy Topological Spaces, J. Math. Anal. Appl. 24, (1968), 182 - 190.
4. A.G. EL' KIN, Ultrafilters and Undecomposable Spaces, Vestnik Mosk. Univ. Mat., 24 (5), (1969), 51.
5. E. Hewitt, A Problem in Set Theoretic Topology, Duke Math. Jour., 10, (1943) 309 - 333.
6. M.S.E. Naschie, On the Certification of heterotic strings, MTheory and e^{∞} Theory, Chaos, Solitons and Fractals (2000), 2397 – 2408.
7. P.V. Ramakrishnan and Lakshmana Gomathi Nayagam, Nearly Fuzzy Hausdorff Spaces, Indian J. Pure Appl. Math., 31 (5) (June ,2000) 695 - 712.
8. Richard Bolstein, Sets of Points of Discontinuity, Proc. Amer. Math. Society Vol. 38.No.1,(March 1973), 193 - 197.
9. G. Thangaraj and G. Balasubramanian, On Somewhat fuzzy continuous functions, J. Fuzzy Math., Vol.11, No.2, (2003) 1-12.
10. G.Thangaraj and G. Balasubramanian, On Fuzzy Resolvable and Fuzzy Irresolvable Spaces, Fuzzy Sets, Rough Sets and Multivalued Operations and Applications, Vol. 1, No.2, 173 - 180, 2009.
11. G.Thangaraj and S. Anjalmose, On Fuzzy Baire Spaces,(Communicated to J. Fuzzy Math.)
12. L.A. Zadeh, Fuzzy Sets, Information and Control, Vol. 8, 338 - 358, 1965.